
Revisiting Isolated and Trusted Execution via
Microarchitectural Cryptanalysis

Daniel Moghimi

Worcester Polytechnic Institute

Committee Members:

• Prof. Donald R. Brown (Department Head)

• Prof. Thomas Eisenbarth (Co-advisor)

• Prof. Simha Sethumadhavan (External Committee)

• Prof. Berk Sunar (Co-advisor)

December 4, 2020

PhD Defense

Security Isolation in Modern-day Computing

Single user,

single task

Security Isolation in Modern-day Computing

app app

Multiuser, multitask,

several security domains

Multiuser, multitask,

several security domains

Single user,

single task

Security Isolation in Modern-day Computing

OS

Hypervisor

APP

OS

Secure Channel

Browser

app app

OS

APP APP APP

Multiuser, multitask,

several security domains

Multiuser, multitask,

several security domains

Single user,

single task

4

Security Isolation in Modern-day Computing

APP

OS

Secure Channel

Browser

app

OS

Hypervisor

APP APP

5

Security Isolation in Modern-day Computing

• Architectural Isolation
• Process-level Isolation

• VM-level Isolation/Virtualization

• In-process Isolation (Browser, JavaScript)

OS

Hypervisor

APP

OS

Secure Channel

Browser

app
APP APP

6

Are we good with
secure isolation?

7

Security Failures – HeartBleed Example

• Vulnerability in OpenSSL Cryptographic Library

• Buffer Overflow Leaking the Private Key

• It affected millions of computers.

• Buffer overflows are well-understood problems for decades.

• The price of a single line of unsanitized code:
memcpy(bp, pl, payload)

8

9

10

11

BIOS

Microcode

Memory

Subsystem

Firmware

Connectivity

Pipeline

SoC Arch

Peripherals

Boot

ISA

C++

JavaScript

TensorFlow

C
Assembly

Transistors?!

12

• Software-based side-channel Attacks

• A user-level adversary leaks the data or secret of other users.

• Running specially-crafted software that exploits the behavior
of the microarchitecture.

• Violating
• process-level isolation

• VM-level isolation

• Osvik et al, Cache Attacks and Countermeasures, 2005

• Percival, CACHE MISSING FOR FUN AND PROFIT

Cache Attacks and Microarchitectural Security

Hardware

Hypervisor

OS

App App App

Process 1 Process 2 Process 3

S
o
ftw

a
re

-B
a
se

d

L
e
a
k
a
g
e

13

Problems in Microarchitectural Security

• People have proposed ad-hoc Countermeasures, e.g.
• Randomized Cache Access Pattern

• Partitioned Cache

• Constant-cache Access Pattern

• Detection of Frequent Cache Misses

14

Problems in Microarchitectural Security

• People have proposed ad-hoc Countermeasures, e.g.
• Randomized Cache Access Pattern

• Partitioned Cache

• Constant-cache Access Pattern

• Detection of Frequent Cache Misses

• Countermeasures are either not used or utterly ineffective.

• Why?

15

Problems in Microarchitectural Security

• People have proposed ad-hoc Countermeasures, e.g.
• Randomized Cache Access Pattern

• Partitioned Cache

• Constant-cache Access Pattern

• Detection of Frequent Cache Misses

• Countermeasures are either not used or utterly ineffective.

• Why?

1. Earliness
16

Problems in Microarchitectural Security

• People have proposed ad-hoc Countermeasures, e.g.
• Randomized Cache Access Pattern

• Partitioned Cache

• Constant-cache Access Pattern

• Detection of Frequent Cache Misses

• Countermeasures are either not used or utterly ineffective.

• Why?

1. Earliness 2. Fuzzy Impact

17

Problems in Microarchitectural Security

• People have proposed ad-hoc Countermeasures, e.g.
• Randomized Cache Access Pattern

• Partitioned Cache

• Constant-cache Access Pattern

• Detection of Frequent Cache Misses

• Countermeasures are either not used or utterly ineffective.

• Why?

1. Earliness 2. Fuzzy Impact 3. Expertise & Tooling
18

1. Uncovering
μ-Arch Side
Channels

19

Cache Attacks

• There are many different type of cache attacks:
• Flush+Reload (Flush+Flush)

• Prime+Probe

• Evict+Reload

• Cache attacks leak memory access patterns of collocated victims
with 64-byte granularity.

• Secret-dependent memory accesses leak some information about
the secret. Examples:
• AES: S-Box lookups

• RSA: Table lookups in fixed-window Montgomery exponentiation

20

Cache Attacks - Cache Line Resolution

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

21

Cache Attacks - Cache Line Resolution

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

22

Cache Attacks - Cache Line Resolution

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

L2/L3 Cache Attacks

23

CPU Memory Subsystem

Front End

Allocation

Queue

stor $$, (add_A)

stor ##, (add_B)

load (add_C), CX

add CX, BX

Scheduler

Store

Load

Load

ALU

ALU

EUsROB

VFNPFN

VFNPFN

VFNPFN

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

Memory Subsystem

Back End DRAM

L3

L2

24

CPU Memory Subsystem – Address Translation

Front End

Allocation

Queue

stor $$, (add_A)

Scheduler

Store

Load

Load

ALU

ALU

EUsROB

DRAM

L3

L2

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

Memory Subsystem

Back End

DTLB

P RW US A … Physical Page Number ……

P RW US A … Physical Page Number ……

P RW US A … Physical Page Number ……

0x000401

Store Virtual Address

25

CPU Memory Subsystem – Address Translation

Front End

Allocation

Queue

stor $$, (add_A)

Scheduler

Store

Load

Load

ALU

ALU

EUsROB

DRAM

L3

L2

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

Memory Subsystem

Back End

DTLB

P RW US A … Physical Page Number ……

P RW US A … Physical Page Number ……

P RW US A … Physical Page Number ……

0x000401

Store Virtual Address

PMH

26

CPU Memory Subsystem – Address Translation

Front End

Allocation

Queue

stor $$, (add_A)

Scheduler

Store

Load

Load

ALU

ALU

EUsROB

DRAM

L3

L2

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

Memory Subsystem

Back End

DTLB

P RW US A … Physical Page Number ……

P RW US A … Physical Page Number ……

P RW US A … Physical Page Number ……

0x000401

Store Virtual Address

PMH
Page

Walk

27

CPU Memory Subsystem – Store Forwarding

Front End

Allocation

Queue

stor $$, (add_A)

stor ##, (add_B)

load (add_C), CX

add CX, BX

Scheduler

Store

Load

Load

ALU

ALU

EUsROB

VFNPFN

VFNPFN

VFNPFN

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

Memory Subsystem

Back End DRAM

L3

L2

• addr_c == addr_a?

• addr_c == addr_b?

28

CPU Memory Subsystem – Store Forwarding

Front End

Allocation

Queue

stor $$, (add_A)

stor ##, (add_B)

load (add_C), CX

add CX, BX

Scheduler

Store

Load

Load

ALU

ALU

EUsROB

VFNPFN

VFNPFN

VFNPFN

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

Memory Subsystem

Back End DRAM

L3

L2

• addr_c[0:12] == addr_a[12:0]?

29

CPU Memory Subsystem – Store Forwarding

Front End

Allocation

Queue

stor $$, (add_A)

stor ##, (add_B)

load (add_C), CX

add CX, BX

Scheduler

Store

Load

Load

ALU

ALU

EUsROB

VFNPFN

VFNPFN

VFNPFN

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

Memory Subsystem

Back End DRAM

L3

L2Verify?

30

MemJam Attack

• Address translation can be expensive.

• 4K Aliasing: Addresses that are 4K apart are assumed dependent.

• The dependency is verified after the execution!

• Re-execution of the load block due to false dependency
• It causes timing delay and side channel

Core

Thread A Thread B

Load 0xFECD1

Load 0xFECD2

Load 0xFECD3

Load 0xFECD4

Load 0xFECD5

Load 0xFECD6

Load 0xFECD7

Load 0xFECD8

E
x
e
c
u
te

 &
 T

im
e

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

31

MemJam – Intra Cache Line Resolution

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

L2/L3 Cache Attacks

32

MemJam – Intra Cache Line Resolution

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

L2/L3 Cache Attacks

MemJam

• Conflicted intra-cache line leakage (4-byte granularity)

• Higher time →Memory accesses with the same bit 3 - 12

• 4 bits of intra-cache level leakage

33

Why should we care the
improved resolution?

34

MemJam – Attacking So-Called Constant Time AES

• Scatter-gather implementation of AES
• Intel SGX Software Development Kit (SDK) and IPP Cryptography Library

• 256 S-Box – 4 Cache Line

• Cache independent access pattern

LINE 2A

LINE 2B

LINE 2C

LINE 2D

64 Bytes

4
 C

a
c
h
e
 L

in
e
s

S-Box Lookup A B C D B

35

MemJam – Attacking So-Called Constant Time AES

LINE 2

64 Bytes

4
 C

a
c
h
e
 L

in
e
s

36

AES Key
Recovery

37

SPOILER Attack
Dependency Resolution

US 7,603,527 B2 RESOLVING FALSE DEPENDENCIES OF

SPECULATIVE LOAD INSTRUCTIONS

“an operation X may determine whether the lower portion of the virtual

address of a speculative load instruction matches the lower portion of

virtual addresses of older store operations” Loosnet Check

….

“in an embodiment, the load instruction may have its input data

forwarded from the store operation from which the load instruction

depends at operation” Store Forwarding

“If there is a hit at operation X and a miss at operation Y, … the physical

addresses of the load and the store may be compared at an operation Z”

“In one embodiment, if there is a hit at operation X and the physical

address of the load or the store operations is not valid, the physical

address check at operation Z may be considered as a hit” “In some

embodiments, the physical address check at operation Z may use a

partial physical address, e.g., base on data stored in the SAB. This

makes the checking at operation Z conservative. Accordingly, in some

embodiments, a match may occur on a partial address and block…”

Finenet Check

38

Spoiler: Finding Undocumented Aliasing

VFNPFN

VFNPFN

VFNPFN

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

L1

DTLB

Memory Subsystem

VFNPFN [8:0]

VFNPFN [8:0]

Offset

Offset

DATA

DATA

VFNPFN [8:0]

VFNPFN [8:0]

Offset

Offset

DATA

DATA

Store Buffer

…Virtual Pages

64 pages

39

Spoiler: Finding Undocumented Aliasing

VFNPFN

VFNPFN

VFNPFN

…….

Offset

0C0

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

0C0

0C0

0C0

…

DATA

DATA

DATA

…

L1

DTLB

Memory Subsystem

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

Store Buffer

…Virtual Pages

64 pages

Stores
0 C 00 x 4 0 0 F E 2

0 C 00 x 4 0 0 F E 1

……

0 C 00 x 4 0 1 0 2 0

0 C 00 x 4 F 1 2 3 4 Load

40

Spoiler: Finding Undocumented Aliasing

Stores
0 C 00 x 4 0 0 F E 3

0 C 00 x 4 0 0 F E 2

……

0 C 00 x 4 0 1 0 2 1

0 C 00 x 4 F 1 2 3 4 Load

…Virtual Pages

VFNPFN

VFNPFN

VFNPFN

…….

Offset

0C0

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

0C0

0C0

0C0

…

DATA

DATA

DATA

…

L1

DTLB

Memory Subsystem

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

Store Buffer

41

Spoiler: Finding Undocumented Aliasing

Stores
0 C 00 x 4 0 0 F E 4

0 C 00 x 4 0 0 F E 3

……

0 C 00 x 4 0 1 0 2 2

0 C 00 x 4 F 1 2 3 4 Load

…Virtual Pages

VFNPFN

VFNPFN

VFNPFN

…….

Offset

0C0

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

0C0

0C0

0C0

…

DATA

DATA

DATA

…

L1

DTLB

Memory Subsystem

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

Store Buffer

42

Spoiler: Finding Undocumented Aliasing

0 C 00 x 4 0 0 F E 5

0 C 00 x 4 0 0 F E 4

……

0 C 00 x 4 0 1 0 2 3

0 C 00 x 4 F 1 2 3 4

…Virtual Pages

VFNPFN

VFNPFN

VFNPFN

…….

Offset

0C0

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

0C0

0C0

0C0

…

DATA

DATA

DATA

…

L1

DTLB

Memory Subsystem

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

Store Buffer

0 C 00 x 6 5 F 3 2 X X

0 C 00 x 3 2 A C 2 X X

Physical Addresses

43

Spoiler: Finding Undocumented Aliasing

…Virtual Pages

VFNPFN

VFNPFN

VFNPFN

…….

Offset

0C0

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

0C0

0C0

0C0

…

DATA

DATA

DATA

…

L1

DTLB

Memory Subsystem

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

VFNPFN [8:0]

VFNPFN [8:0]

0C0

0C0

DATA

DATA

Store Buffer

44

Spoiler: Finding Undocumented Aliasing

…Virtual Pages

45

Spoiler: Learning on Physical Address Bits

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

L2/L3 Cache Attacks

MemJam

46

Spoiler: Learning on Physical Address Bits

Least 12 bits (Virtual Address = Physical Address)VFN

L1 Cache Attacks

L2/L3 Cache Attacks

MemJam

PFN

MemJam

47

Spoiler: Learning on Physical Address Bits

Least 12 bits (Virtual Address = Physical Address)VFN

L1 Cache Attacks

L2/L3 Cache Attacks

MemJam

PFN

MemJam

Pime+Probe on

Cache, Eviction

Sets, Rowhammer

48

Spoiler: Learning on Physical Address Bits

Least 12 bits (Virtual Address = Physical Address)VFN

L1 Cache Attacks

L2/L3 Cache Attacks

MemJam

PFN

MemJam

Pime+Probe on

Cache, Eviction

Sets, Rowhammer

Spoiler

49

2. Data Leakage via
Automated Synthesis

50

Transient Execution Attacks

• Date leakage as oppose to access pattern leakage

• Spectre
• Due to the CPU’s branch Predictor.

• Meltdown
• Due the speculative behavior of the CPU’s memory subsystem

• Data leakage wo/ any assumption about the victim software

51

Meltdown

52

Meltdown Attack Steps

Step 1:

Step 2:

Step 3:
256 different CPU Cache Line

‘P’ = 0x50

53

Microarchitecture Data Sampling (MDS)

• Meltdown is fixed but we could steal leak data on the
fixed CPU.

54

OS

Hypervisor

APP APP

whatever

Microarchitecture Data Sampling (MDS)

• Meltdown is fixed but we could steal leak data on the
fixed CPU.

• Threat Model: Local adversary
• Exploiting other threads (simultaneous multithreading)

• Exploiting previous process context

55

OS

Hypervisor

APP APP

whatever

Victim

Process

Context

Switch
Attacker

Process

Victim

Process

Context

Switch
Attacker

Process

Context

Switch

SMT

CPU Memory Subsystem – Leaky Buffers

VFNPFN

VFNPFN

VFNPFN

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Load Buffer

VFNPFN [8:0]

VFNPFN [8:0]

VFNPFN [8:0]

…….

Offset

Offset

Offset

…

DATA

DATA

DATA

…

Store Buffer

L1

F
il
l
B
u
ff

e
r

D
T

L
B

DRAM

L3

L2

Memory Subsystem

MLPDS

L1TF

MSBDS

(Fallout)

MFBDS (ZombieLoad)

56

Microarchitecture Data Sampling (MDS)

• Meltdown is fixed but we could steal leak data on the
fixed CPU.

• Threat Model: Local adversary
• Exploiting other threads (simultaneous multithreading)

• Exploiting previous process context

• Which part of the CPU leak the data?!
• Store Buffer (Fallout)

• Line Fill Buffer (ZombieLoad)

57

OS

Hypervisor

APP APP

whatever

Victim

Process

Context

Switch
Attacker

Process

Victim

Process

Context

Switch
Attacker

Process

Context

Switch

SMT

Challenges with MDS Testing?

• Reproducing attacks is not reliable.

• No public tool to find new variants or to verify hardware patches.

• Impossible to quantify the impact of leakage.

58

Memory

Access
Canonical

#GP

TL

B

Y

PMH

Perm

.

Y Presen

t

Y

#PF

Accessed
Y

Set A

Bit

Aligned

Vector

Y

P
R

W
US A … Physical Page Number ……

PTE

OffsetVFN

Virtual Address
#GP

Cache

Aligned

Split

Cache

Y
Cached

Y

Cache Miss

Handler

False

Store Dep.

Y

Hazard

Recovery

TSX

Failure

Y

#RTM

Transynther (Fuzzing-based Random MDS Testing)

Step 1:

Step 2:

Step 3:
256 different CPU Cache Line

‘P’ = 0x50

59

Transynther (Fuzzing-based Random MDS Testing)

Canonical
TLB

Perm.

Present

Accessed

Aligned

Vector

Cache

AlignedCached

False Store

Dep.

TSX Failure

Step 1:

Step 2:

Step 3:
256 different CPU Cache Line

‘P’ = 0x50

60

Transynther (Fuzzing-based Random MDS Testing)

Canonical
TLB

Perm.

Present

Accessed

Aligned

Vector

Cache

AlignedCached

False Store

Dep.

TSX Failure

Step 1:

Step 2:

Step 3:
256 different CPU Cache Line

‘P’ = 0x50

Step 0:

Buffer

Grooming

Stores Same

Thread:

0x41424344

Stores Hyper

Thread:

0x61626364

Loads Same

Thread:

0x51525354

Loads Hyper thread

Thread:

0x71727374

61

Transynther (Fuzzing-based Random MDS Testing)

Canonical
TLB

Perm.

Present

Accessed

Aligned

Vector

Cache

AlignedCached

False Store

Dep.

TSX Failure

Step 1:

Step 2:

Step 3:
256 different CPU Cache Line

‘P’ = 0x50

Stores Same

Thread:

0x41424344

Stores Hyper

Thread:

0x61626364

Loads Same

Thread:

0x51525354

Loads Hyper thread

Thread:

0x71727374

Step 0:

Buffer

Grooming

62

Transynther (Fuzzing-based MDS Testing)

63

Transynther (Fuzzing-based MDS Testing)

64

Transynther (Fuzzing-based MDS Testing)

65

66

Medusa Attack

• Medusa only leaks the write combining data.

• Implicit WC, i.e., ‘rep mov’, ‘rep sto’, can be leaked.
• Memory Copy Routines

• File IO

• Served by a Write Combining Buffer (or just the Fill Buffer).

• Three variants
• Based on different ways of massaging the microarchitecture

67

OpenSSL RSA Key Recovery

• OpenSSL Base64 Decoder uses inline Memcpy(-oS)

• Triggered during the RSA Key Decoding from the PEM format:

-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQDmTvQjjtGtnIqMwmmaLW+YjbYTsNR8PGKXr78iYwrMV5Ye4VGy

BwS6qLD4s/EzCzGIDwkWCVx+gVHvh2wGW15Ddof0gVAtAMkR6gRABy4TkK+6YFSK

AyjmHvKCfFHvc9loeFGDyjmwFFkfdwzppXnH1Wwt0OlnyCU1GbQ1w7AHuwIDAQAB

AoGBAMyDri7pQ29NBIfMmGQuFtw8c0R3EamlIdQbX7qUguFEoe2YHqjdrKho5oZj

nDu8o+Zzm5jzBSzdf7oZ4qaeekv0fO+ZSz6CKYLbuzG2IXUB8nHJ7NuH3lacfivD

V4Cfg0yFnTK+MDG/xTVqywrCTsslkTCYC/XZOXU5Xt5z32FZAkEA/nLWQhMC4YPM

0LqMtgKzfgQdJ7vbr43WVVNpC/dN/ibUASI/3YwY0uUtqSjilIghIY7pRohrPJ6W

ntSJw0UAhQJBAOe2b9cfiOTFKXxyU4j315VkulFfTyL6GwXi/7mvpcDCixDLNRyk

uRigmdKjtIUrAX0pwjgXa6niqJ691jExez8CQQCcMZZAvTbZhHSn9LwHxqS0SIY1

K+ZxX5ogirFDPS5NQzyE7adSsntSioh6/LQKBX6BAR9FwtxBPACtwz5F9geZAkA8

a3z0SlvG04aC1cjkgUPsx6wxxbl79F2RhmSKRbvh7JiYk3RQ+L7vJgmWPGu5AcLM

oVPsjmbbkKfJZNTyVOW/AkABepEi++ZQQW0FXJWZ3nM+2CNcXYCtTgi4bGkvnZPp

/1pAy9rjeVJYhb8acTRnt+dU+uZ74CTtfuzUTZLOIuVe

-----END RSA PRIVATE KEY-----

68

OpenSSL RSA Key Recovery

• OpenSSL Base64 Decoder uses inline Memcpy(-oS)

• Triggered during the RSA Key Decoding from the PEM format:

-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQDmTvQjjtGtnIqMwmmaLW+YjbYTsNR8PGKXr78iYwrMV5Ye4VGy

BwS6qLD4s/EzCzGIDwkWCVx+gVHvh2wGW15Ddof0gVAtAMkR6gRABy4TkK+6YFSK

AyjmHvKCfFHvc9loeFGDyjmwFFkfdwzppXnH1Wwt0OlnyCU1GbQ1w7AHuwIDAQAB

AoGBAMyDri7pQ29NBIfMmGQuFtw8c0R3EamlIdQbX7qUguFEoe2YHqjdrKho5oZj

nDu8o+Zzm5jzBSzdf7oZ4qaeekv0fO+ZSz6CKYLbuzG2IXUB8nHJ7NuH3lacfivD

V4Cfg0yFnTK+MDG/xTVqywrCTsslkTCYC/XZOXU5Xt5z32FZAkEA/nLWQhMC4YPM

0LqMtgKzfgQdJ7vbr43WVVNpC/dN/ibUASI/3YwY0uUtqSjilIghIY7pRohrPJ6W

ntSJw0UAhQJBAOe2b9cfiOTFKXxyU4j315VkulFfTyL6GwXi/7mvpcDCixDLNRyk

uRigmdKjtIUrAX0pwjgXa6niqJ691jExez8CQQCcMZZAvTbZhHSn9LwHxqS0SIY1

K+ZxX5ogirFDPS5NQzyE7adSsntSioh6/LQKBX6BAR9FwtxBPACtwz5F9geZAkA8

a3z0SlvG04aC1cjkgUPsx6wxxbl79F2RhmSKRbvh7JiYk3RQ+L7vJgmWPGu5AcLM

oVPsjmbbkKfJZNTyVOW/AkABepEi++ZQQW0FXJWZ3nM+2CNcXYCtTgi4bGkvnZPp

/1pAy9rjeVJYhb8acTRnt+dU+uZ74CTtfuzUTZLOIuVe

-----END RSA PRIVATE KEY-----

69

OpenSSL RSA Key Recovery

• OpenSSL Base64 Decoder uses inline Memcpy(-oS)

• Triggered during the RSA Key Decoding from the PEM format:

P

Q

d mod (p-1)

d mod (q-1)

Q^(-1) mod p

N (Modulus)

d (Private Key)

70

OpenSSL RSA Key Recovery - Coppersmith

• Knowledge of at least Τ1 3 of P+Q

• Create a 𝑛 dimensional hidden number problem where 𝑛 is relative
to the number of recovered chunks

• Feed it to the lattice-based algorithm to find the short vector

P

Q

71

OpenSSL RSA Key Recovery – Coppersmith Attack

• Knowledge of at least Τ1 3 of P+Q.

• Creating a 𝑛 dimensional hidden number problem where 𝑛 is
relative to the number of recovered chunks.

• Feeding it to the lattice-based algorithm to find the short vector.

P

Q

Coppersmith P

72

Store Buffer Leakage on Ice Lake

• MSBDS (Fallout) on Ice Lake
• November 2019: Intel sent us an Ice Lake Machine

• March 2019: Tested Transyther on the Ice Lake CPU

• Mar 27, 2020: Reported MSBDS Leakage on Ice Lake

• May 5, 2020: Intel Completed triage
• MDS mitigations are not deployed properly

• Chicken bits were not enabled for all mitigations.

• OEMs shipped with old/wrong microcode.

• Embargoed till July

• July 13, 2020: MDS advisory and list of affected CPUs were updated.

73

74

3. Hardware-
based Trusted
Computing

75

What are other threat models?

• We can not trust:
• cloud providers.

• software developers.

• OEMs and computer manufacturers.

• Trusted Computing
• Others can compute on the data without

giving them the data.

• Example Applications:
• Privacy-Preserving machine learning

• Digital right management (DRM)

• Anonymous blockchain transactions

Multiuser, multitask,

several security domains

76

Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

Hardware

Hypervisor

OS

App App App

Traditional Security Model

T
ru

st
e
d

Hardware

Hypervisor

OS

App App App

77

System-level Threat to Trusted Execution Environments (T2)

• Intel Software Guard eXtensions (SGX)

• Enclave: A hardware protected user-
level software module
• Mapped by the operating system

• Loaded by the user program

• Authenticated and encrypted by CPU

• It must protect secrets against
system-level adversary

New Attacker Model:

Attacker gets full control over the OS

Hardware

Hypervisor

OS

App App App

blocked

blocked

Hardware

App

78

CacheZoom and
CacheQuote

79

Intel SGX Attack Taxonomy

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery

• Hyperthreading is out
• Remote Attestation Warning

SGX Attacks

Intel

Hardware

Software Dev

Responsibility

Foreshadow [1]

Plundervolt [2]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

ZombieLoad

80

Intel SGX Attack Taxonomy

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery

• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic

SGX Attacks

Intel

Hardware

Software Dev

Responsibility

Foreshadow [1]

Plundervolt [2]

µarch Side

Channel

Cache [3][4][5]

Branch Predictors

[6][7]

Interrupt Latency [8]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks." CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical." USENIX WOOT 2017.

[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks." DIMVA 2017.

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor." ACM SIGPLAN 2018.

[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.

ZombieLoad

81

Intel SGX Attack Taxonomy

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery

• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic

• Deterministic Attacks
• Page Fault, A/D Bit, etc. (4kB Granularity)

SGX Attacks

Intel

Hardware

Software Dev

Responsibility

Foreshadow [1]

Plundervolt [2]

Deterministic

– Ctrl Channel

µarch Side

Channel

Cache [3][4][5]

Branch Predictors

[6][7]

Interrupt Latency [8]

Page Fault [9]

A/D Bit [10]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks." CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical." USENIX WOOT 2017.

[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks." DIMVA 2017.

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor." ACM SIGPLAN 2018.

[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.

[9] Xu et al. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems." IEEE S&P 2015.

[10] Wang, Wenhao, et al. "Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX." ACM CCS 2017.

ZombieLoad

82

Can deterministic
attacks do better?

83

CopyCat Attack

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

TimeEnclave

Execution

Thread

Starts

84

CopyCat Attack

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

85

CopyCat Attack

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

86

CopyCat Attack

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

87

CopyCat Attack

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

88

CopyCat Attack

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

I got 15 IRQs.

How many

zeros?

89

CopyCat Attack

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

I got 15 IRQs.

How many

zeros?

DTLB

P
R

W

U

S
A …

Physical Page

Number
……

P
R

W

U

S A …
Physical Page

Number
……

P
R

W

U

S
A …

Physical Page

Number
……

0x000401

Code Page Virtual Address

PMH
Page

Walk

The A Bit is

only set when

an instruction

is retired

90

CopyCat Attack

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

91

CopyCat Attack

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful.
• A Secondary oracle

• Page table attack as a deterministic secondary oracle

CALL ADD XOR MUL PUSH ADD MUL MOV NOP

Time

Target

Code

Page

92

CopyCat Attack

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful.
• A Secondary oracle

• Page table attack as a deterministic secondary oracle

CALL ADD XOR MUL PUSH ADD MUL MOV NOP

Time

Target

Code

Page

Stack

Page
4 Steps

93

CopyCat Attack

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful.
• A Secondary oracle

• Page table attack as a deterministic secondary oracle

CALL ADD XOR MUL PUSH ADD MUL MOV NOP

Time

Target

Code

Page

Stack

Page
Data

Page
4 Steps 3 Steps

94

CopyCat Attack

Page A

Page B

Page C

Page D

Traditional

Page-table

Attacks

Page A

Page B

Page C

Page D

CopyCat

Attack

Additional Data

4

8

6

4

• Previous controlled-channel attacks leak page access patterns.

• CopyCat additionally leaks number of executed instructions per
each page.

95

CopyCat – Leaking Branches

if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2

96

Binary Extended Euclidean Algorithm (BEEA)

• Previous attacks only leak some of
the branches w/ some noise.

97

Binary Extended Euclidean Algorithm (BEEA)

• Previous attacks only leak some of
the branches w/ some noise.

• CopyCat synchronously leaks all the
branches wo/ any noise.

98

CopyCat on WolfSSL - Cryptanalysis

• Single-trace attack during RSA key generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

99

CopyCat on WolfSSL - Cryptanalysis

• Single-trace attack during RSA key generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune algorithm with the help of the recovered trace

p = . . . X

q = . . . X

p = . . . 0

q = . . . 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . . 1

q = . . . 1

100

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune algorithm with the help of the recovered trace

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . X 1

q = . . X 1
N = 1 1 1 0

101

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune algorithm with the help of the recovered trace

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . X 1

q = . . X 1
N = 1 1 1 0

p = . . 0 0

q = . . 1 0

p = . . 1 0

q = . . 0 0

p = . . 0 0

q = . . 1 0

p = . . 1 1

q = . . 0 1

102

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune algorithm with the help of the recovered trace

N = 1 1 1 0

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . X 1

q = . . X 1

p = . X 0 0

q = . X 1 0

p = . X 1 0

q = . X 0 0

p = . X 0 0

q = . X 1 0

p = . X 1 1

q = . X 0 1

p = . 0 1 1

q = . 1 0 1

p = . 1 1 1

q = . 0 0 1

p = . 0 0 0

q = . 1 1 0

p = . 1 0 0

q = . 0 1 0

p = . 0 1 0

q = . 1 0 0

p = . 1 1 0

q = . 0 0 0

p = . 0 0 0

q = . 1 1 0

p = . 1 0 0

q = . 0 1 0

103

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune algorithm with the help of the recovered trace

N = 1 1 1 0

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . X 1

q = . . X 1

p = . X 0 0

q = . X 1 0

p = . X 1 0

q = . X 0 0

p = . 0 1 0

q = . 1 0 0

p = . 1 1 0

q = . 0 0 0

104

Benefits of CopyCat compared to Previous Attacks

• Instruction level granularity
• Imbalance number of instructions

• Leak the outcome of branches

• Fully deterministic and reliable
• Millions of instructions tested

• Easy to scale and replicate
• No reverse engineering of branches and

microarchitectural components

• Tracking all the branches synchronously

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Deterministic –

Ctrl Channel

µarch Side

Channel

CopyCat (our work)

105

5. Physically Isolated
Security Elements

106

Beyond TEEs – Physical Isolation

Software is

insecure.

Heartbleed?

TEEs are not

Secure

Enough?!

Rootkits?

Ransomware?

UntrustedOrg

.?

107

Beyond TEEs - Physical Isolation

Software is

insecure.

Heartbleed?

TEEs are not

Secure

Enough?!

A separate hardware

for cryptographic

operations

Rootkits?

Ransomware?

UntrustedOrg

.?

108

Trusted Platform Module (TPM)

• Security chip for computers?

• Tamper and Side-Channel Resistant

• Cryptographic Co-processor

• Standardized by TCG, it supports
• hash functions

• encryption

• digital signatures

• …

109

Physical Threats to TPM

Hardware

Hypervisor

OS

App App App

Trusted
• Our work focuses on Timing Attack

110

High-resolution Timing Test

• TPM frequency ~= 32-120 MHz

• CPU Frequency is more than 2 GHz

111

High-resolution Timing Test – Intel PTT (fTPM)

H
is

to
g
ra

m

• Intel Platform Trust Technology (PTT)
• Integrated firmware-TPM inside the CPU package

112

High-resolution Timing Test – Intel PTT (fTPM)

H
is

to
g
ra

m

• Intel Platform Trust Technology (PTT)
• Integrated firmware-TPM inside the CPU package

• Kernel Driver to increase the Resolution

113

High-resolution Timing Test – ECDSA Nonce Leakage

0101000100111111...111

t
4.8 4.844.764.724.67

0000100100111111...111

1101000100111111...111

0000000000111111...111

0000000000001111...111

Nonce

• Intel fTPM: 4-bit Window Nonce Length Leakage
• ECDSA

• ECSChnorr

• BN-256 (ECDAA)

𝐸𝐶𝐷𝑆𝐴 𝑆𝑖𝑔𝑛:
𝑥1, 𝑦1 = 𝑘𝑖 × 𝐺
𝑟𝑖 = 𝑥1 𝑚𝑜𝑑 𝑛

𝑠𝑖 = 𝑘𝑖
−1 𝑧 + 𝑟𝑖𝑑 𝑚𝑜𝑑 𝑛

114

High-resolution Timing Test – ECDSA Nonce Leakage

0101000100111111...111

t
4.8 4.844.764.724.67

0000100100111111...111

1101000100111111...111

0000000000111111...111

0000000000001111...111

Nonce

• Intel fTPM: 4-bit Window Nonce Length Leakage
• ECDSA

• ECSChnorr

• BN-256 (ECDAA)

𝐸𝐶𝐷𝑆𝐴 𝑆𝑖𝑔𝑛:
𝑥1, 𝑦1 = 𝑘𝑖 × 𝐺
𝑟𝑖 = 𝑥1 𝑚𝑜𝑑 𝑛

𝑠𝑖 = 𝑘𝑖
−1 𝑧 + 𝑟𝑖𝑑 𝑚𝑜𝑑 𝑛

115

High-resolution Timing Test – ECDSA Nonce Leakage

0101000100111111...111

t
4.8 4.844.764.724.67

0000100100111111...111

1101000100111111...111

0000000000111111...111

0000000000001111...111

Nonce

• Intel fTPM: 4-bit Window Nonce Length Leakage
• ECDSA

• ECSChnorr

• BN-256 (ECDAA)

𝐸𝐶𝐷𝑆𝐴 𝑆𝑖𝑔𝑛:
𝑥1, 𝑦1 = 𝑘𝑖 × 𝐺
𝑟𝑖 = 𝑥1 𝑚𝑜𝑑 𝑛

𝑠𝑖 = 𝑘𝑖
−1 𝑧 + 𝑟𝑖𝑑 𝑚𝑜𝑑 𝑛

116

High-resolution Timing Test – ECDSA Nonce Leakage

0101000100111111...111

t
4.8 4.844.764.724.67

0000100100111111...111

1101000100111111...111

0000000000111111...111

0000000000001111...111

Nonce

• Intel fTPM: 4-bit Window Nonce Length Leakage
• ECDSA

• ECSChnorr

• BN-256 (ECDAA)

𝐸𝐶𝐷𝑆𝐴 𝑆𝑖𝑔𝑛:
𝑥1, 𝑦1 = 𝑘𝑖 × 𝐺
𝑟𝑖 = 𝑥1 𝑚𝑜𝑑 𝑛

𝑠𝑖 = 𝑘𝑖
−1 𝑧 + 𝑟𝑖𝑑 𝑚𝑜𝑑 𝑛

117

High-resolution Timing Test – ECDSA Nonce Leakage

0101000100111111...111

t
4.8 4.844.764.724.67

0000100100111111...111

1101000100111111...111

0000000000111111...111

0000000000001111...111

Nonce

• Intel fTPM: 4-bit Window Nonce Length Leakage
• ECDSA

• ECSChnorr

• BN-256 (ECDAA)

𝐸𝐶𝐷𝑆𝐴 𝑆𝑖𝑔𝑛:
𝑥1, 𝑦1 = 𝑘𝑖 × 𝐺
𝑟𝑖 = 𝑥1 𝑚𝑜𝑑 𝑛

𝑠𝑖 = 𝑘𝑖
−1 𝑧 + 𝑟𝑖𝑑 𝑚𝑜𝑑 𝑛

118

High-resolution Timing Test – ECDSA Nonce Leakage

0101000100111111...111

t
4.8 4.844.764.724.67

0000100100111111...111

1101000100111111...111

0000000000111111...111

0000000000001111...111

Nonce

3.33 ms

• Intel fTPM: 4-bit Window Nonce Length Leakage
• ECDSA

• ECSChnorr

• BN-256 (ECDAA)

𝐸𝐶𝐷𝑆𝐴 𝑆𝑖𝑔𝑛:
𝑥1, 𝑦1 = 𝑘𝑖 × 𝐺
𝑟𝑖 = 𝑥1 𝑚𝑜𝑑 𝑛

𝑠𝑖 = 𝑘𝑖
−1 𝑧 + 𝑟𝑖𝑑 𝑚𝑜𝑑 𝑛

119

High-resolution Timing Test – Analysis Of Devices

• RSA and ECDSA timing test on 3 dedicated TPM and Intel fTPM

• Various non-constant behaviour for both RSA and ECDSA

120

TPM-Fail – Recovering Private ECDSA Key

• TPM is programmed with an unknown key.

• We already have a template for 𝑡𝑖 .

• Attack Steps:

1. Collect list of signatures (𝑟𝑖 , 𝑠𝑖) and timing samples 𝑡𝑖.

2. Filter signatures based on 𝑡𝑖 and keeps (𝑟𝑖 , 𝑠𝑖) with a known bias.

3. Lattice-based attack to recover private key 𝑑, from signatures
with biased nonce 𝑘𝑖.

121

Lattice and Hidden Number Problem

• 𝑠 = 𝑘−1 𝑧 + 𝑑𝑟 𝑚𝑜𝑑 𝑛 → 𝑘𝑖
−1 − 𝑠𝑖

−1𝑟𝑖𝑑 − 𝑠𝑖
−1𝑧 ≡ 0 𝑚𝑜𝑑 𝑛

122

Lattice and Hidden Number Problem

• 𝑠 = 𝑘−1 𝑧 + 𝑑𝑟 𝑚𝑜𝑑 𝑛 → 𝑘𝑖
−1 − 𝑠𝑖

−1𝑟𝑖𝑑 − 𝑠𝑖
−1𝑧 ≡ 0 𝑚𝑜𝑑 𝑛

• 𝐴𝑖 = −𝑠𝑖
−1𝑟𝑖 , 𝐵𝑖 = −𝑠𝑖

−1𝑧 → 𝑘𝑖 + 𝐴𝑖𝑑 + 𝐵𝑖 = 0

123

Lattice and Hidden Number Problem

• 𝑠 = 𝑘−1 𝑧 + 𝑑𝑟 𝑚𝑜𝑑 𝑛 → 𝑘𝑖
−1 − 𝑠𝑖

−1𝑟𝑖𝑑 − 𝑠𝑖
−1𝑧 ≡ 0 𝑚𝑜𝑑 𝑛

• 𝐴𝑖 = −𝑠𝑖
−1𝑟𝑖 , 𝐵𝑖 = −𝑠𝑖

−1𝑧 → 𝑘𝑖 + 𝐴𝑖𝑑 + 𝐵𝑖 = 0

• Let 𝑋 be the upper bound on ki and (𝑑, 𝑘0, 𝑘1… , 𝑘𝑛) is unknown

[1] Boneh D, Venkatesan R. Hardness of computing the most significant bits of secret keys in Diffie-

Hellman and related schemes. InAnnual International Cryptology Conference 1996 Aug 18 (pp. 129-142).

Springer, Berlin, Heidelberg. 124

Lattice and Hidden Number Problem

• 𝑠 = 𝑘−1 𝑧 + 𝑑𝑟 𝑚𝑜𝑑 𝑛 → 𝑘𝑖
−1 − 𝑠𝑖

−1𝑟𝑖𝑑 − 𝑠𝑖
−1𝑧 ≡ 0 𝑚𝑜𝑑 𝑛

• 𝐴𝑖 = −𝑠𝑖
−1𝑟𝑖 , 𝐵𝑖 = −𝑠𝑖

−1𝑧 → 𝑘𝑖 + 𝐴𝑖𝑑 + 𝐵𝑖 = 0

• Let 𝑋 be the upper bound on ki and (𝑑, 𝑘0, 𝑘1… , 𝑘𝑛) is unknown

• Lattice Construction:

𝑛
𝑛

⋱
𝑛

𝐴1 𝐴2 … 𝐴𝑡
𝑋

𝑛

𝐵1 𝐵2 … 𝐵𝑡 𝑋

LLL/BKZ

125

TPM-Fail – Key Recovery Results

• Intel fTPM
• ECDSA, ECSchnorr and BN-256 (ECDAA)

• Three different threat model System, User, Network

• STMicroelectronics TPM
• CC EAL4+ Certified

126

TPM-Fail Case Study: StrongSwan VPN

𝐼𝐾𝐸_𝐼𝑁𝐼𝑇[𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙, 𝑔𝑥, 𝑛𝐼 , …]

VPN Client VPN Server
TPM Device

𝐼𝐾𝐸_𝐼𝑁𝐼𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒[𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙, 𝑔
𝑥, 𝑛𝑅 , …]

𝑠𝑠ℎ𝑎𝑟𝑒𝑑−𝑠𝑒𝑐𝑟𝑒𝑡 = 𝑃𝑅𝐹ℎ(𝑔
𝑥𝑦)

𝐼𝐾𝐸_𝐴𝑢𝑡ℎ[𝑆𝑖𝑔𝑛𝑠𝑘𝐼, (𝑛𝑅 , …)]

𝐼𝐾𝐸_𝐴𝑢𝑡ℎ𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒[𝑆𝑖𝑔𝑛𝑠𝑘𝑅, (𝑛𝑅 , …)]

127

TPM-Fail Case Study: StrongSwan VPN

• Stealing private keys remotely after 44,000 handshake ~= 5 hours

Timing

difference for

each window

1.11 ms

ping 192.168.1.x average rtt

0.713 ms

ping 1.1.1.1

(Cloudflare DNS)

average rtt

19.312 ms

128

5. Conclusion

129

Conclusion

• Improved understanding of the side-channel attack surface:
• Software-based side-channel attacks are practical.

• Future CPUs and cryptographic software are more secure.

130

Conclusion

• Improved understanding of the side-channel attack surface:
• Software-based side-channel attacks are practical.

• Future CPUs and cryptographic software are more secure.

• Proper threat modeling is crucial
• These attacks apply across many different threat models.

• Vulnerabilities occur because of porting a previous design to a different
threat model, e.g. Intel SGX, Cryptographic Implementations

131

Conclusion

• Automated testing for CPU attacks (Transynther)
• helps us to understand the root cause and impact of these issues better.

• can be used to verify hardware mitigations.

132

Conclusion

• Automated testing for CPU attacks (Transynther)
• helps us to understand the root cause and impact of these issues better.

• can be used to verify hardware mitigations.

• Automated testing of software (MicroWalk)
• helps us to identify vulnerable code at scale

• reduces analysis effort for software security

133

Conclusion

• Automated testing for CPU attacks (Transynther)
• helps us to understand the root cause and impact of these issues better.

• can be used to verify hardware mitigations.

• Automated testing of software (MicroWalk)
• helps us to identify vulnerable code at scale

• reduces analysis effort for software security

• Hardware and software security are not separate problems.
• covers cryptography, computer architecture and systems security.

134

Summary of Contributed Publications

1) D Moghimi, B Sunar, T Eisenbarth, N Heninger. "TPM-Fail: TPM
meets Timing and Lattice Attacks" USENIX Security 2020.

2) D Moghimi, M Lipp, B Sunar, M Schwarz. "Medusa:
Microarchitectural Data Leakage via Automated Attack
Synthesis" USENIX Security 2020.

3) D Moghimi, J Van Bulck, N Heninger, F Piessens, B Sunar.
"CopyCat: Controlled Instruction-Level Attacks on Enclaves"
USENIX Security 2020.

4) Z Weissman, T Tiemann, D Moghimi, E Custodio, T
Eisenbarth, B Sunar. "JackHammer: Efficient Rowhammer on
Heterogeneous FPGA-CPU Platforms" TCHES 2020.

5) J Van Bulck, D Moghimi, M Schwarz, M Lipp, M Minkin, D
Genkin, Y Yarom, B Sunar, D Gruss, F Piessens."LVI: Hijacking
Transient Execution through Microarchitectural Load Value
Injection" IEEE S&P 2020.

6) C Canella, D Genkin, L Giner, D Gruss, M Lipp, M Minkin, D
Moghimi, F Piessens, M Schwarz, B Sunar, J Van Bulck.
"Fallout: Leaking Data on Meltdown-resistant CPUs" CCS 2019.

7) M Schwarz, M Lipp, D Moghimi, J Van Bulck, J Stecklina, T
Prescher, D Gruss. "ZombieLoad: Cross-Privilege-Boundary
Data Sampling" CCS 2019.

8) S Islam, A Moghimi, I Bruhns, M Krebbel, B Gulmezoglu, T
Eisenbarth, B Sunar. "SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks" USENIX Security 2019.

9) A Moghimi, J Wichelmann, T Eisenbarth, B Sunar. "MemJam: A
False Dependency Attack against Constant-Time Crypto
Implementations" (Extended Version) IJPP 2019.

10) J Wichelmann, A Moghimi, T Eisenbarth, B Sunar. "MicroWalk:
A Framework for Finding Side Channels in Binaries" ACSAC
2018.

11) F Dall, G De Micheli, T Eisenbarth, D Genkin, N Heninger, A
Moghimi, Y Yarom. "CacheQuote: Efficiently Recovering Long-
term Secrets of SGX EPID via Cache Attacks" TCHES 2018.

12) A Moghimi, T Eisenbarth, B Sunar. "MemJam: A False
Dependency Attack against Constant-Time Crypto
Implementations in SGX" CT-RSA 2018.

13) A Moghimi, G Irazoqui, T Eisenbarth. "CacheZoom: How SGX
Amplifies The Power of Cache Attacks" CHES 2017.

135

Coordinated Disclosure

Crpytographic Libraries

Intel IPP (CVE-2018-12155, CVE-2018-3691)

WolfSSL (CVE-2019-1996{0-3})

OpenSSL and Libgcrypt (No CVE available).

Trusted Platform Modules

Intel fTPM (CVE-2019-11090)

STMicrolectronics (CVE-2019-16863)

Intel CPUs

Fallout (CVE-2018-12126)

SPOILER (CVE-2019-0162)

MemJam (No CVE)

136

Acknowledgements

• Collaborators

• Sponsors

137

THANKS

▪ Questions?

138

