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Trusted Execution Environment (TEE) - Intel SGX

* Intel Software Guard eXtensions (SGX)

- Enclave: Hardware protected user-level software module
* Mapped by the Operating System
» Loaded by the user program
» Authenticated and Encrypted by CPU 1 |

* Protects against system Z ﬁ
level adversary
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New Attacker Model: : 1
Hardware
Attacker gets full control over OS

Traditional Security Model



Intel SGX Attack Taxonomy

* Intel’s Responsibility SCX Attacks
« Microcode Patches / Hardware mitigation
« TCB Recovery !
* Old Keys are Revoked Intel’s
- Remote attestation succeeds only with mitigation. Responsibility

« Hyperthreadingis out

* Remote Attestation Warning

Foreshadow [1] ]

v

v

Plundervolt [2] J

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution.” USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.
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— Interrupt Latency [8]

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor.” ACM SIGPLAN 2018.
[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing.” USENIX Security 2017.
[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.” ACM CCS 2018.
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« Constant-time Coding
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» Deterministic Attacks
« Page Fault, A/D Bit, etc. (4kB Granularity)
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 Malicious OS controls the interrupt handler
A threshold to execute 1 or O instructions
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CopyCat Attack

 Malicious OS controls the interrupt handler
A threshold to execute 1 or O instructions
* Filtering Zeros out: Clear the A bit before, Check the A bit after

I got 15 IRQs.
How many

Code Page Virtual Address zeros?

0x000401

> 4

DTLB
p|R|U A Physical Page
w | s Number
p | R U A Physical Page —
W s Number O
p | R ] A Physical Page
— Number O The A Bit is

only set when
an instruction
is retired
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CopyCat Attack

 Malicious OS controls the interrupt handler

A threshold to execute 1 or O instructions

* Filtering Zeros out: Clear the A bit before, Check the A bit after
* Deterministic Instruction Counting

« Counting from start to end is not useful.

» A Secondary oracle
« Page table attack as a deterministic secondary oracle

Target 4 Steps Stack
Code lp Page
Page | [

CALL ADD XOR MUL PUSH ADD MUL MOV -

Data

3 S‘teps Page
|

Time
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CopyCat Attack

 Previous Controlled Channel attacks leak Page Access Patterns
» CopyCat additionally leaks number of instructions per page

Additional Data >

Traditional CopyCat
Page-table Attack
Attacks



CopyCat - Leaking Branches

if(c == 0) {

r = add(r, d);
}
else {

r = add(r, s);
}

C Code
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je label

mov %edx, %esi
label:

call add

mov %eax, -0xc(%rbp)

Stack S —
Code P1—
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Stack S —
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else {
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CopyCat - Leaking Branches

if(c == 0) {

r = add(r, d);
}
else {

r = add(r, s);
}

C Code

test %eax, %eax

je label

mov %edx, %esi
label:

call add

mov %eax, -@xc(%rbp)

Stack S —
Code P1—

Code P2—

c=0

test/je

call

Stack S —
Code P1—

c=1

Code P2—

]‘\;

test/je

mov

call



CopyCat - Leaking Branches

if(c
r =

}

else {
r =

}

0) {
add(r, d);

add(r, s);

zm)

C Code

test %eax, %eax

je label

mov %edx, %esi
label:

call add

mov %eax, -@xc(%rbp)

switch (c){
case 0:
r = Oxbeef;
break;
case 1:
r = Oxcafe;
break;
default:
r = 0;

Stack S —

Codep1—| | €=0 o
Code P2—

test/je call
Stack S — —
CodeP1—|| €=1 ]‘\—
Code P2 — ° &

test/je  mov call

7

jmp

C Code

Data —] [
N\ Case
Code—__&—#
test/je mov  jmp
Data —
Case 1
Code—L_ ¢ =
test/je cmp/je  mov
Data —
Default
Code—__o = o
test/je cmp/je  jmp

mov

/
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Binary Extended Euclidean Algorithm (BEEA)

. 1: procedure MODINV(u, modulus v)
 Previous attacks only leak some of 2 b Ody e L o uv; = v,
the branches w/ some noise T R
5: if isOdd(b;) then
6 b; + b; —u
7 b; + b,‘/2
8: while isEven(v;) do
9: Vi < Vl'/2
10: if isOdd(d;) then
11: di+d;—u
12: d;i + d,-/2
13: if u; > v; then
14: u; — u; —vj, bj < b; —d,
15: else
16: Vi < Vi —uj, di < dj — b;

return d;



Binary Extended Euclidean Algorithm

. 1: procedure MODINV(u, modulus v
 Previous attacks only leak some of o Ty 04 Lt e,
the branches w/ some noise s
5: if isOdd(b;) then
» CopyCat synchronously leaks all the ; el the
branches wo/ any noise 7 bi + bi/2
8: while isEven(v;) do
9: Vi < Vl'/2
10: if isOdd(d;) then
11: di+d;—u
12: d;i + d,-/2
13: if u; > v; then
14: u; < u; —v;, b; < b, —d;
15: else
16: Vi < Vv; —u;, d;i + d; — b;

return d;
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CopyCat on WolfSSL

* Translate instruction Counts to Basic Block Transitions

11,3,8,5,4,4,13,11,3,8,5,4,4,8,11,3,8,11,3,8,13,4,3,3,8,11,3,11,5,4,4

DDD, 8 CSSS 13 DDD| 8 Csss 8 DDD 8 DDD 8 DASDD 8 DDD| 11 CSSS

?-Ioop\ W v-loopt u- Ioop\u Ioop u- Ioop u-Ioop\ S?

Rule1: 2 5229=D D D.

Rule2:? 29493939 -_D 345D D.

Rule3: 2737232 %9_c 585585558

Rule 4: §? 22 = §2 — - loop.

Rule 5: §? 57 = §1 — u-loop.



CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
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CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x
- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p

* We know that p.q = N, and N is public
« Branch and prune Algorithm with the help of the recovered trace

[N =111 O] q:::XO q:::X1

p=.X00 p=.X10 p=.X00 p=.X11
g=.X10 qg=.X00 qg=.X10 qg=.X01

v v v 4 v 4 v 4

p=.000 p=.100 p=.010 p=.110 p=.000 p=.100]| p=.011 p=.111
q=.110 q=.010 qg=.100 q=.000 q=.110 qg=.0101|[ gq=.101 q=.001




CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x

- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p
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CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x

- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p

* We know that p.q = N, and N is public
« Branch and prune Algorithm with the help of the recovered trace

» Single-trace Attack during RSA Key Generation: d = e~ mod A(N)

(p—l)gq—l)

zl
* Only 81% of the keys have the above property
* |t works even on a hardcoded and big value for e, i.e. e # 65537

» Similar attack but instead use A(N) =



CopyCat on WolfSSL - Cryptanalysis Results

 Executed each attack 100 times.

e DSAk ' modn

« Average 22,000 IRQs

« 75 ms to iterate over an average of 6,320 steps
* RSA g1 mod p

« Average 106490 IRQs

« 365 ms to iterate over an average of 39,400 steps
* RSA e~ mod A(N)

e e 1 mod A1(N)

« Average 230,050 IRQs

« 800ms to iterate over an average of 81,090 steps

« Experimental traces always match the leakage model in all experiments
—> Successful single-trace key recovery
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CopyCat - Bypassing ECDSA Timing

Countermeasure

int we_ecc_mulmod_ex(mp_intx k, ecc_point *G, ecc_point *R, mp_intx a, mp_int
* modulus, int map, voidx* heap) { ...
for (;;) {
if (——bitent == 0) { /* grab next digit as required */
if (digidx == —1) {
break;
}
buf = get_digit(k, digidx);
bitent = (int)DIGIT_BIT;
——digidx;
}
i = (buf >> (DIGIT_BIT — 1)) & 1; /* grab the next msb from the multiplicand */
buf <<= 1;
if (mode == 0) {
mode =1; / timing resistant — dummy operations */
err = ecc_projective_add_point(M[ 1], M[2], M[2], a, modulus, mp);...
err = ecc_projective_dbl_point(M[2], M[3], a, modulus, mp);...
}...
err = ecc_projective_add_point(M[0], M[1], M[i*1], a, modulus, mp);...
err = ecc_projective_dbl_point(M[2], M[2], a, modulus, mp):...
} 7 end for */...}

Table 2: Minimum number of signature samples for each bias
class to reach 100% recovery success for the lattice-based
key recovery on wc_ecc_mulmod_ex of ECDSA, with lattice
reduction time L-TIME and trace collection time T-TIME.

LZBs DiM L-TIME SIGNATURES IRQs T-TIME

4 75 30 sec 1,200 3.9M 13.3 sec
5 58 5 sec 1,856 6.0M  20.4 sec
6 46 3 sec 2,944 9.6M  33.7 sec
7 42 2 sec 5,376 17.5M 1 min

50



How about other Crypto libraries?

 Libgcrypt uses a variant of BEEA
* Single trace attack on DSA, Elgamal, ECDSA, RSA Key generation

* OpenSSL uses BEEA for computing GCD
* Single trace attack on RSA Key generation when computing gcd(qg —1,p — 1)

* There is still lots of other cases of micro leakages due to usage of
branches, e.g. Intel IPP Crypto lehmer’s GCD with optimizations

. . . Secret . . Single-Trace
Operation (Subroutine) Implementation Branch Exploitable Computation — Vulnerable Callers Attack
Scalar Multiply (vc_ecc_mulmod_ex)  _ _ _ _ Montgomery Ladder w/Branches v v __ (kxG) owceccsignhash _ __________________ X __.
o Greatest Common Divisor (fp_ged) Euclidean (Divisions) . _ A R / S
Q]o\is (k~Tmod n) — wec_DsaSign v
Modular Inverse (fp_invmod) BEEA v v (g~ mod p) — we_MakeRsaKey v
(e~! mod A(N)) — wc_MakeRsaKey v
Greatest Common Divisor (mpi_gcd) Euclidean (Divisions ) v b 4 N/A N/A
Cﬁ?‘ (k-Tmod n) — {dsa, elgamal}.c::sign,_gcry_ecc_ecdsa_sig v
\,\‘0% Modular Inverse (mpi_invm) Modified BEEA [43, Vol II, §4.5.2] v v (qF1 mod p) — generate_{std, fips,x931} v
(e_l mod A(N)) — generate_{std, fips,x931} v
gov  Greatest Common Divisor (BN_ged) BEEA v ___ v __gdlg-lp-1)»RSAX9 deriveex v
0950 Modular Inverse (BN_mod_inverse _no_branch) BEEA w/ Branches X N/A N/A N/A
" .. , . . ged(q—1,e) — cpIsCoPrime N/A
it Greses Common Divio (tppssca o) Modifed LahmersGCD SR P S e N
\ Modular Inverse (cpModInv_BNU) Euclidean (Divisions) v X N/A N/A




Responsible Disclosure

* WolfSSL fixed the issues in 4.3.0 and 4.4.0
» Blinding for k=1 mod n and e™! mod A(N)
e Alternate formulation for g~ mod p: g~ mod p
» Using a constant-time (branchless) modular inverse [11]

e Libgcrypt fixed the issues in 1.8.6

 Using a constant-time (branchless) modular inverse [11]

* OpenSSL fixed the issue in 1.1.1e
 Using a constant-time (branchless) GCD algorithm [11]

[11] Bernstein, Daniel J., and Bo-Yin Yang. "Fast constant-time gcd computation and modular inversion." CHES 2019.



Interrupt Driven Attacks and Single Stepping

* Amplifying Transient Execution Attacks
* Foreshadow, ZombielLoad, LVI, CrossTalk

« Amplifying Microarchitectural Side Channels

« CacheZoom, BranchScope, Branch Shadowing,
Bluethunder, etc.

* Interrupt Latency as a Side Channel
 Nemesis, Frontal Attack

» CopyCat: Deterministic Instruction
Counting as a Side Channel

SGX-Step

Title

CrossTalk: Speculative Data Leaks Across Cores Are Real

Frontal

ack: Leaking Control-Flow in SGX via the CPU
Frontend

From A to Z: Projective coordinates leakage in the wild

LVI: Hijacking Transient Execution through

Microarchitectural Load Value Injection

CopyCat: Contralled Instruction-Level Attacks on

Enclaves

When ane vulnerable primitive turns viral: Novel single-
trace attacks on ECDSA and RSA

Big Numbers - Big Troubles: Systematically Analyzing

Nonce Leakage in (EC)DSA Implementations

Plundervolt: Software-based Fault Injection Attacks

against Intel SGX

Bluethunder: A 2-level Directional Predictor Based Side-

Channel Attack against SGX
Fallout: Leaking Data on Meltdown-resistant CPUs

A Tale of Two Worlds: Assessing the Vulnerability of

Enclave Shielding Runtimes

Zombieload: Cross-Privilege-Boundary Data Sampling

SPOILER: Speculative Load Hazards Boost Rowhammer
and Cache Attacks

Nemesis: Studying Microarchitectural Timing Leaks in
Rudimentary CPU Interrupt Logic

Foreshadow: Extre the Keys to the Intel SGX
Out-of-Order Execution

Kingdom with Transie
Single Trace Attack Against RSA Key Generation in Intel
SGX SSL

Off-Limits: Abusing Legacy x86 Memory Segmentation
to Spy on Enclaved Execution

SGX-Step: A Practical Attack Framework for Precise
Enclave Execution Control

Publication
details

ccs18

Source
code

SGX-Step features used

pping, page fault

Single-stepping interrupt
latency, PTE A/

Page fault

Single-stepping, page-table

manipulation

single-stepping, page fault
PTEA/D

single-stepping, page fault,
PTE A/D

Page fault

Privileged interrupt/call
gates, MSR

Single-stepping
PTE A/D

Single-stepping, page fault,
PTE A/D

Single-stepping, zero-

stepping, page-table
manipulation

single-stepping interrupt
latency
Single-stepping interrupt

latency, page fault, PTE A/D

Single-ste
stepping, pa
manipulation

Page fault

Single-stepping

segmentation, p:

Single-stepping, page fault,
PTEA/D



Comparison to other Attacks

Attack Code/Data  Granularity Noise

_g DRAM row buffer conflicts [74] Code + data X Low (1-8KiB) X High

:% PRIME+PROBE cache conflicts [15, 30, 47, 58] Code + data X Med (64-512 B cache line/set) Med

E Read-after-write false dependencies [46] Data v High (4B) X High

2 Branch prediction history buffers [24, 34, 44] Code v High (branch instruction) Low

E Interrupt latency [71] Code + data v High (instruction latency class) X High

5. Port contention [3] Code v High (u-op execution port) x High

T:) Page faults [80] and page table A/D bits [72, 74] Code + data X Low (4KiB ) v Deterministic
§ [A-32 segmentation faults [29] Code + data ¥ Low/high (4 KiB; I B for enclaves < 1 MiB) v Deterministic
S Page table FLUSH+RELOAD [72] Code + data X Low (32 KiB) Low

8 CorYCAT Code v High (instruction) v Deterministic
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Comparison to other Attacks

Some only apply to legacy enclave (32-bit)

Some are limited to be applied SYRCHIONOUSLY.

Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)
Some can be mitigated by flushing/isolating microarchitectural buffers.

Attack Code/Data  Granularity Noise

DRAM row buffer conflicts [74] Code + data X Low (1-8KiB) X High
PRIME+PROBE cache confliets"{#5730, 37, 53] Code + data X Med (64-512 B cache line/set) Med
Read-after-write falsesdependenéieS [46] Data v High (4B) X High
Branch prediction historysbuffers={247 34 44 Code v High (branch instruction) Low
Interrupt latency [71] Code + data v High (instruction latency class) X High
Port contention 3] Code v High (u-op execution port) X High

Page faults [80] and page table A/D bits [72, 74]
[A-32 segmentation faults [29]

Page table FLUSH+RELOAD [72]

CorYCAT

Ctrl channel | u-arch contention

Code + data
Code + data
Code + data
Code

X Low (4KiB)

X Low/high (4 KiB; 1 B for enclaves < 1 MiB)
X Low (32 KiB)

v High (instruction)

v Deterministic

v Deterministic
Low

v Deterministic




CopyCat and Macro-fusion

* Fused instructions are counted as one.
* Confirm/RE of the behavior of macro-fusion on Intel CPUs

» Macro-fusion is dependent on the program layout - deterministic

» The offset of a cmp+branch within a cache line
* True when hyperthreading is disabled (Intel SGX TCB)

Macro-Fusibility

Instruction TEST | CMP | AND | ADD | SUB | INC | DEC
JO/JNO v X v X X X X
JC/JB/JAE/JINB v v v XX
JE/JZ/INE/JINZ v v v v o Y
JNA/JBE/JA/INBE v v v v XX
JS/JNS/JP/JPE/JINP/JPO v X v X X X X
JL/JNGE/JGE/JNL/JLE/ING/JG/INLE | v v v oYY

https://en.wikichip.org/wiki/macro-operation_fusion
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Conclusion

* Instruction Level Granularity —
* Imbalance number of instructions |

 Leak the outcome of branches T Software Dov
L. . . Responsibility Responsibility
* Fully Deterministic and reliable — !
Ty . . parch Side Deterministic
* Millions of instructions tested A | - Ctrl Channel

« Attacks match the exact leakage model of branches

« Easy to scale and replicate

* No reverse engineering of branches and —> Thiswork
microarchitectural components

 Tracking all the branches synchronously
* Branchless programming is hard!




Future Directions - Other TEE Models

 Virtual Machine TEE
« AMD SEV
* Intel TDX

* What are other ways to interrupt a
TEE in the above models?

* What is the impact?
* Guest OSS
« Cryptographic Services
* Other Applications

. Target VM
GVA Service
Space R “**| Process
........ o
A
GPA vy Kernel v
Space .
........ — /
[ | nv
Space lﬁ: - ‘ S
Al
i G @ @ RAM

TRUSTEDBYTD

NOT TRUSTEDBYTD




Future Directions - Non-cryptographic Application of Enclaves

» Data-dependent secret-processing applications
 Confidential Deep Learning (
 Trusted Database (EnclaveDB)

« Automated Leakage Analysis and Exploit Generation

* Fuzzing and Taint Analysis L - -- -

Pin ?

* Dynamic Analysis




Future Directions - Mitigation

« Compiler-based Solutions

 Balancing secret-dependent branches with dummy instructions

 System-level Mitigation
* Self-paging Enclave (Autarky)

|
Enclave

1
(trusted) E mov %rax,(0x1060) : r.n.x;v %rax,(9x16000)
- [
: - ,
AEX LEEXIT ERESUME
— : 1
oS Page fault . : Page fault
(untrusted) handler : handler
SGX HW | Paging ISA
(trusted) )

Figure 2. Autarky enforces invocation of an enclave’s self-
paging handler on each page fault.



. - https://github.com/j
Dardel Moghim! ovanbulck/sgx-step

@danielmgmi
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