CopyCat: Controlled
Instruction-Level
Attacks on Enclaves

« Daniel Moghimi
 Jo Van Bulck
« Nadia Heninger

* Frank Piessens —
 Berk Sunar

KU LEUVEN

OS/Hypervisor Security Model

s & T === ==== \
(I
19 I
12 l
1= :
! Hardware :
)\ S

Traditional Security Model

Trusted Execution Environment (TEE) - Intel SGX

* Intel Software Guard eXtensions (SGX)

—

Traditional Security Model

. 1
Hardware

Traditional Security Model

Trusted Execution Environment (TEE) - Intel SGX

* Intel Software Guard eXtensions (SGX)

- Enclave: Hardware protected user-level software module

* Mapped by the Operating System
» Loaded by the user program
 Authenticated and Encrypted by CPU - - -

. i |
Hardware

Traditional Security Model

Trusted Execution Environment (TEE) - Intel SGX

* Intel Software Guard eXtensions (SGX)

- Enclave: Hardware protected user-level software module
* Mapped by the Operating System
» Loaded by the user program
» Authenticated and Encrypted by CPU 1 |

* Protects against system Z ﬁ
level adversary

F' ~

New Attacker Model: : 1
Hardware
Attacker gets full control over OS

Traditional Security Model

Intel SGX Attack Taxonomy

* Intel’s Responsibility SCX Attacks
« Microcode Patches / Hardware mitigation
« TCB Recovery !
* Old Keys are Revoked Intel’s
- Remote attestation succeeds only with mitigation. Responsibility

« Hyperthreadingis out

* Remote Attestation Warning

Foreshadow [1]]

v

v

Plundervolt [2] J

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution.” USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

Intel SGX Attack Taxonomy

* Intel’s Responsibility

« Microcode Patches / Hardware mitigation
« TCB Recovery

SGX Attacks

v

\4

» Old Keys are Revoked
« Remote attestation succeeds only with mitigation.

Intel’s

Software Dev

Responsibility Responsibility

« Hyperthreadingis out

* Remote Attestation Warning

v

v

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution.” USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

Foreshadow [1]]

Plundervolt [2] J

Intel SGX Attack Taxonomy

* Intel’s Responsibility

« Microcode Patches / Hardware mitigation
« TCB Recovery
» Old Keys are Revoked

SGX Attacks

v \4

« Remote attestation succeeds only with mitigation.

« Hyperthreadingis out

Intel’s Software Dev
Responsibility Responsibility

* Remote Attestation Warning

v

Foreshadow [1]]

parch Side

 pyarch Side Channel
« Constant-time Coding

 Flushing and Isolating buffers
* Probabilistic

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution.” USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.
[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks.” CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical.” USENIX WOOT 2017.

[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks.” DIMVA 2017.

v

 Plundervolt [2] J Channel

— Cache [3][4][5]

Branch Predictors

(6][7]

— Interrupt Latency [8]

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor.” ACM SIGPLAN 2018.
[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing.” USENIX Security 2017.
[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.” ACM CCS 2018.

Intel SGX Attack Taxonomy

* Intel’s Responsibility
« Microcode Patches / Hardware mitigation

« TCB Recovery
» Old Keys are Revoked

SGX Attacks

v \4

« Remote attestation succeeds only with mitigation.

« Hyperthreadingis out

Intel’s Software Dev
Responsibility Responsibility

* Remote Attestation Warning

 pyarch Side Channel
« Constant-time Coding

 Flushing and Isolating buffers
* Probabilistic

» Deterministic Attacks
« Page Fault, A/D Bit, etc. (4kB Granularity)

=, Foreshadow [1]] v
‘ parch Side
> Plundervolt [2] J Channel

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution.” USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.
[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks.” CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical.” USENIX WOOT 2017.

[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks.” DIMVA 2017.

— Cache [3][4][5]

Branch Predictors

[6][7]

— Interrupt Latency [8]

v

Deterministic
- Ctrl Channel

;

Page Fault [9]

A/D Bit [10]

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor.” ACM SIGPLAN 2018.

[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing.” USENIX Security 2017.
[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.” ACM CCS 2018.

[9] Xu et al. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems."” [EEE S&P 2015.

[10] Wang, Wenhao, et al. “"Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX." ACM CCS 2017.

CopyCat
Attack

CopyCat Attack

 Malicious OS controls the interrupt handler

NOP ADD XOR MUL DIV ADD MUL NOP NOP

Enclave T] m é

Execution
Thread
Starts

CopyCat Attack

 Malicious OS controls the interrupt handler

IRQ

Range

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler

IRQ

Range

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
* A threshold to execute 1 or 0 instructions

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
* A threshold to execute 1 or 0 instructions

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
* A threshold to execute 1 or 0 instructions

IRQ

Range

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
* A threshold to execute 1 or 0 instructions

IRQ

Range

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
* A threshold to execute 1 or 0 instructions

IRQ

Range

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
* A threshold to execute 1 or 0 instructions

IRQ

Range

NOP ADD XOR MUL DIV ADD MUL NOP NOP

tq ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
A threshold to execute 1 or O instructions

NOP ADD XOR MUL DIV ADD MUL NOP -

ty ty Time

CopyCat Attack

 Malicious OS controls the interrupt handler
A threshold to execute 1 or O instructions

| got 15 IRQs.
How many
Zeros?

CopyCat Attack

 Malicious OS controls the interrupt handler
A threshold to execute 1 or O instructions
* Filtering Zeros out: Clear the A bit before, Check the A bit after

I got 15 IRQs.
How many

Code Page Virtual Address zeros?

0x000401

> 4

DTLB
p|R|U A Physical Page
w | s Number
p | R U A Physical Page —
W s Number O
p | R] A Physical Page
— Number O The A Bit is

only set when
an instruction
is retired

CopyCat Attack

 Malicious OS controls the interrupt handler

A threshold to execute 1 or O instructions

* Filtering Zeros out: Clear the A bit before, Check the A bit after
* Deterministic Instruction Counting

CopyCat Attack

 Malicious OS controls the interrupt handler

A threshold to execute 1 or O instructions

* Filtering Zeros out: Clear the A bit before, Check the A bit after
* Deterministic Instruction Counting

« Counting from start to end is not useful.

» A Secondary oracle
« Page table attack as a deterministic secondary oracle

Target
Code
Page

CALL ADD XOR MUL PUSH ADD MUL MOV -

Time

CopyCat Attack

 Malicious OS controls the interrupt handler

A threshold to execute 1 or O instructions

* Filtering Zeros out: Clear the A bit before, Check the A bit after
* Deterministic Instruction Counting

« Counting from start to end is not useful.

» A Secondary oracle
« Page table attack as a deterministic secondary oracle

Target 4 Steps Stack
Code lp Page
Page | ‘

CALL ADD XOR MUL PUSH ADD MUL MOV -

Time

CopyCat Attack

 Malicious OS controls the interrupt handler

A threshold to execute 1 or O instructions

* Filtering Zeros out: Clear the A bit before, Check the A bit after
* Deterministic Instruction Counting

« Counting from start to end is not useful.

» A Secondary oracle
« Page table attack as a deterministic secondary oracle

Target 4 Steps Stack
Code lp Page
Page | [

CALL ADD XOR MUL PUSH ADD MUL MOV -

Data

3 S‘teps Page
|

Time

CopyCat Attack

 Previous Controlled Channel attacks leak Page Access Patterns

Traditional
Page-table
Attacks

CopyCat Attack

 Previous Controlled Channel attacks leak Page Access Patterns
» CopyCat additionally leaks number of instructions per page

Additional Data >

Traditional CopyCat
Page-table Attack
Attacks

CopyCat - Leaking Branches

if(c == 0) {

r = add(r, d);
}
else {

r = add(r, s);
}

C Code

test %eax, %eax

je label

mov %edx, %esi
label:

call add

mov %eax, -0xc(%rbp)

Stack S —
Code P1—

Code P2—

Stack S —
Code P1—

Code P2—

CopyCat - Leaking Branches

if(c == 0) {

r = add(r, d);
}
else {

r = add(r, s);
}

C Code

CopyCat - Leaking Branches

if(c == 0) {

r = add(r, d);
}
else {

r = add(r, s);
}

C Code

test %eax, %eax

je label

mov %edx, %esi
label:

call add

mov %eax, -0xc(%rbp)

Stack S —
Codep1—| | €=0
Code P2—
test/je cal
Stack S —
Codep1—] | €=1
Code P2 — -

test/je mo

CopyCat - Leaking Branches

if(c == 0) {

r = add(r, d);
}
else {

r = add(r, s);
}

C Code

test %eax, %eax

je label

mov %edx, %esi
label:

call add

mov %eax, -@xc(%rbp)

Stack S —
Code P1—

Code P2—

c=0

Stack S —
Code P1—

Code P2—

CopyCat - Leaking Branches

if(c == 0) {

r = add(r, d);
}
else {

r = add(r, s);
}

C Code

test %eax, %eax

je label

mov %edx, %esi
label:

call add

mov %eax, -@xc(%rbp)

Stack S —
Code P1—

Code P2—

c=0

test/je

call

Stack S —
Code P1—

c=1

Code P2—

]‘\;

test/je

mov

call

CopyCat - Leaking Branches

if(c
r =

}

else {
r =

}

0) {
add(r, d);

add(r, s);

zm)

C Code

test %eax, %eax

je label

mov %edx, %esi
label:

call add

mov %eax, -@xc(%rbp)

switch (c){
case 0:
r = Oxbeef;
break;
case 1:
r = Oxcafe;
break;
default:
r = 0;

Stack S —

Codep1—| | €=0 o
Code P2—

test/je call
Stack S — —
CodeP1—|| €=1]‘\—
Code P2 — ° &

test/je mov call

7

jmp

C Code

Data —] [
N\ Case
Code—__&—#
test/je mov jmp
Data —
Case 1
Code—L_ ¢ =
test/je cmp/je mov
Data —
Default
Code—__o = o
test/je cmp/je jmp

mov

/

Crypto means
Crpyptoatta

Binary Extended Euclidean Algorithm (BEEA)

. 1: procedure MODINV(u, modulus v)
 Previous attacks only leak some of 2 b Ody e L o uv; = v,
the branches w/ some noise T R
5: if isOdd(b;) then
6 b; + b; —u
7 b; + b,‘/2
8: while isEven(v;) do
9: Vi < Vl'/2
10: if isOdd(d;) then
11: di+d;—u
12: d;i + d,-/2
13: if u; > v; then
14: u; — u; —vj, bj < b; —d,
15: else
16: Vi < Vi —uj, di < dj — b;

return d;

Binary Extended Euclidean Algorithm

. 1: procedure MODINV(u, modulus v
 Previous attacks only leak some of o Ty 04 Lt e,
the branches w/ some noise s
5: if isOdd(b;) then
» CopyCat synchronously leaks all the ; el the
branches wo/ any noise 7 bi + bi/2
8: while isEven(v;) do
9: Vi < Vl'/2
10: if isOdd(d;) then
11: di+d;—u
12: d;i + d,-/2
13: if u; > v; then
14: u; < u; —v;, b; < b, —d;
15: else
16: Vi < Vv; —u;, d;i + d; — b;

return d;

CopyCat on WolfSSL

* Translate instruction Counts to Basic Block Transitions

11,3,8,5,4,4,13,11,3,8,5,4,4,8,11,3,8,11,3,8,13,4,3,3,8,11,3,11,5,4,4

CopyCat on WolfSSL

* Translate instruction Counts to Basic Block Transitions

11,3,8,5,4,4,13,11,3,8,5,4,4,8,11,3,8,11,3,8,13,4,3,3,8,11,3,11,5,4,4

DDD, 8 CSSS 13 DDD| 8 Csss 8 DDD 8 DDD 8 DASDD 8 DDD| 11 CSSS

Rule1: 2 5229=D D D.
Rule2:? 29493939 -_D 345D D.

Rule3: 2737232 %9_c 585585558

CopyCat on WolfSSL

* Translate instruction Counts to Basic Block Transitions

11,3,8,5,4,4,13,11,3,8,5,4,4,8,11,3,8,11,3,8,13,4,3,3,8,11,3,11,5,4,4

DDD, 8 CSSS 13 DDD| 8 Csss 8 DDD 8 DDD 8 DASDD 8 DDD| 11 CSSS

?-Ioop\ W v-loopt u- Ioop\u Ioop u- Ioop u-Ioop\ S?

Rule1: 2 5229=D D D.

Rule2:? 29493939 -_D 345D D.

Rule3: 2737232 %9_c 585585558

Rule 4: §? 22 = §2 — - loop.

Rule 5: §? 57 = §1 — u-loop.

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x

- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p
 We know that p.q =N

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x
- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p
 We know that p.q =N
« Branch and prune Algorithm with the help of the recovered trace

o]

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x
- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p

* We know that p.q = N, and N is public
« Branch and prune Algorithm with the help of the recovered trace

o]

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x
- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p

* We know that p.q = N, and N is public
« Branch and prune Algorithm with the help of the recovered trace

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x
- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p

* We know that p.q = N, and N is public
« Branch and prune Algorithm with the help of the recovered trace

[N =111 O] q:::XO q:::X1

p=.X00 p=.X10 p=.X00 p=.X11
g=.X10 qg=.X00 qg=.X10 qg=.X01

v v v 4 v 4 v 4

p=.000 p=.100 p=.010 p=.110 p=.000 p=.100]| p=.011 p=.111
q=.110 q=.010 qg=.100 q=.000 q=.110 qg=.0101|[gq=.101 q=.001

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x

- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p

* We know that p.q = N, and N is public
« Branch and prune Algorithm with the help of the recovered trace

p=...X

CopyCat on WolfSSL - Cryptanalysis

- Single-trace Attack during DSA signing: k;,, = k~! mod n
* |terative over the entire recovered trace with n as input -2 k;,,,
* Plug k;,,in s; = ki7'(h —r..x)mod n > get private key x

- Single-trace Attack during RSA Key Generation: ¢;,,, = ¢~ mod p

* We know that p.q = N, and N is public
« Branch and prune Algorithm with the help of the recovered trace

» Single-trace Attack during RSA Key Generation: d = e~ mod A(N)

(p—l)gq—l)

zl
* Only 81% of the keys have the above property
* |t works even on a hardcoded and big value for e, i.e. e # 65537

» Similar attack but instead use A(N) =

CopyCat on WolfSSL - Cryptanalysis Results

 Executed each attack 100 times.

e DSAk ' modn

« Average 22,000 IRQs

« 75 ms to iterate over an average of 6,320 steps
* RSA g1 mod p

« Average 106490 IRQs

« 365 ms to iterate over an average of 39,400 steps
* RSA e~ mod A(N)

e e 1 mod A1(N)

« Average 230,050 IRQs

« 800ms to iterate over an average of 81,090 steps

« Experimental traces always match the leakage model in all experiments
—> Successful single-trace key recovery

00 =~ O Lh B L2 b

o v

-

I

15

CopyCat - Bypassing ECDSA Timing

Countermeasure

int we_ecc_mulmod_ex(mp_intx k, ecc_point *G, ecc_point *R, mp_intx a, mp_int
* modulus, int map, voidx* heap) { ...
for (;;) {
if (——bitent == 0) { /* grab next digit as required */
if (digidx == —1) {
break;
}
buf = get_digit(k, digidx);
bitent = (int)DIGIT_BIT;
——digidx;
}
i = (buf >> (DIGIT_BIT — 1)) & 1; /* grab the next msb from the multiplicand */
buf <<= 1;
if (mode == 0) {
mode =1; / timing resistant — dummy operations */
err = ecc_projective_add_point(M[1], M[2], M[2], a, modulus, mp);...
err = ecc_projective_dbl_point(M[2], M[3], a, modulus, mp);...
}...
err = ecc_projective_add_point(M[0], M[1], M[i*1], a, modulus, mp);...
err = ecc_projective_dbl_point(M[2], M[2], a, modulus, mp):...
} 7 end for */...}

Table 2: Minimum number of signature samples for each bias
class to reach 100% recovery success for the lattice-based
key recovery on wc_ecc_mulmod_ex of ECDSA, with lattice
reduction time L-TIME and trace collection time T-TIME.

LZBs DiM L-TIME SIGNATURES IRQs T-TIME

4 75 30 sec 1,200 3.9M 13.3 sec
5 58 5 sec 1,856 6.0M 20.4 sec
6 46 3 sec 2,944 9.6M 33.7 sec
7 42 2 sec 5,376 17.5M 1 min

50

How about other Crypto libraries?

 Libgcrypt uses a variant of BEEA
* Single trace attack on DSA, Elgamal, ECDSA, RSA Key generation

* OpenSSL uses BEEA for computing GCD
* Single trace attack on RSA Key generation when computing gcd(qg —1,p — 1)

* There is still lots of other cases of micro leakages due to usage of
branches, e.g. Intel IPP Crypto lehmer’s GCD with optimizations

. . . Secret . . Single-Trace
Operation (Subroutine) Implementation Branch Exploitable Computation — Vulnerable Callers Attack
Scalar Multiply (vc_ecc_mulmod_ex) _ _ _ _ Montgomery Ladder w/Branches v v __ (kxG) owceccsignhash _ __________________ X __.
o Greatest Common Divisor (fp_ged) Euclidean (Divisions) . _ A R / S
Q]o\is (k~Tmod n) — wec_DsaSign v
Modular Inverse (fp_invmod) BEEA v v (g~ mod p) — we_MakeRsaKey v
(e~! mod A(N)) — wc_MakeRsaKey v
Greatest Common Divisor (mpi_gcd) Euclidean (Divisions) v b 4 N/A N/A
Cﬁ?‘ (k-Tmod n) — {dsa, elgamal}.c::sign,_gcry_ecc_ecdsa_sig v
\,\‘0% Modular Inverse (mpi_invm) Modified BEEA [43, Vol II, §4.5.2] v v (qF1 mod p) — generate_{std, fips,x931} v
(e_l mod A(N)) — generate_{std, fips,x931} v
gov Greatest Common Divisor (BN_ged) BEEA v ___ v __gdlg-lp-1)»RSAX9 deriveex v
0950 Modular Inverse (BN_mod_inverse _no_branch) BEEA w/ Branches X N/A N/A N/A
" .. , . . ged(q—1,e) — cpIsCoPrime N/A
it Greses Common Divio (tppssca o) Modifed LahmersGCD SR P S e N
\ Modular Inverse (cpModInv_BNU) Euclidean (Divisions) v X N/A N/A

Responsible Disclosure

* WolfSSL fixed the issues in 4.3.0 and 4.4.0
» Blinding for k=1 mod n and e™! mod A(N)
e Alternate formulation for g~ mod p: g~ mod p
» Using a constant-time (branchless) modular inverse [11]

e Libgcrypt fixed the issues in 1.8.6

 Using a constant-time (branchless) modular inverse [11]

* OpenSSL fixed the issue in 1.1.1e
 Using a constant-time (branchless) GCD algorithm [11]

[11] Bernstein, Daniel J., and Bo-Yin Yang. "Fast constant-time gcd computation and modular inversion." CHES 2019.

Interrupt Driven Attacks and Single Stepping

* Amplifying Transient Execution Attacks
* Foreshadow, ZombielLoad, LVI, CrossTalk

« Amplifying Microarchitectural Side Channels

« CacheZoom, BranchScope, Branch Shadowing,
Bluethunder, etc.

* Interrupt Latency as a Side Channel
 Nemesis, Frontal Attack

» CopyCat: Deterministic Instruction
Counting as a Side Channel

SGX-Step

Title

CrossTalk: Speculative Data Leaks Across Cores Are Real

Frontal

ack: Leaking Control-Flow in SGX via the CPU
Frontend

From A to Z: Projective coordinates leakage in the wild

LVI: Hijacking Transient Execution through

Microarchitectural Load Value Injection

CopyCat: Contralled Instruction-Level Attacks on

Enclaves

When ane vulnerable primitive turns viral: Novel single-
trace attacks on ECDSA and RSA

Big Numbers - Big Troubles: Systematically Analyzing

Nonce Leakage in (EC)DSA Implementations

Plundervolt: Software-based Fault Injection Attacks

against Intel SGX

Bluethunder: A 2-level Directional Predictor Based Side-

Channel Attack against SGX
Fallout: Leaking Data on Meltdown-resistant CPUs

A Tale of Two Worlds: Assessing the Vulnerability of

Enclave Shielding Runtimes

Zombieload: Cross-Privilege-Boundary Data Sampling

SPOILER: Speculative Load Hazards Boost Rowhammer
and Cache Attacks

Nemesis: Studying Microarchitectural Timing Leaks in
Rudimentary CPU Interrupt Logic

Foreshadow: Extre the Keys to the Intel SGX
Out-of-Order Execution

Kingdom with Transie
Single Trace Attack Against RSA Key Generation in Intel
SGX SSL

Off-Limits: Abusing Legacy x86 Memory Segmentation
to Spy on Enclaved Execution

SGX-Step: A Practical Attack Framework for Precise
Enclave Execution Control

Publication
details

ccs18

Source
code

SGX-Step features used

pping, page fault

Single-stepping interrupt
latency, PTE A/

Page fault

Single-stepping, page-table

manipulation

single-stepping, page fault
PTEA/D

single-stepping, page fault,
PTE A/D

Page fault

Privileged interrupt/call
gates, MSR

Single-stepping
PTE A/D

Single-stepping, page fault,
PTE A/D

Single-stepping, zero-

stepping, page-table
manipulation

single-stepping interrupt
latency
Single-stepping interrupt

latency, page fault, PTE A/D

Single-ste
stepping, pa
manipulation

Page fault

Single-stepping

segmentation, p:

Single-stepping, page fault,
PTEA/D

Comparison to other Attacks

Attack Code/Data Granularity Noise

_g DRAM row buffer conflicts [74] Code + data X Low (1-8KiB) X High

:% PRIME+PROBE cache conflicts [15, 30, 47, 58] Code + data X Med (64-512 B cache line/set) Med

E Read-after-write false dependencies [46] Data v High (4B) X High

2 Branch prediction history buffers [24, 34, 44] Code v High (branch instruction) Low

E Interrupt latency [71] Code + data v High (instruction latency class) X High

5. Port contention [3] Code v High (u-op execution port) x High

T:) Page faults [80] and page table A/D bits [72, 74] Code + data X Low (4KiB) v Deterministic
§ [A-32 segmentation faults [29] Code + data ¥ Low/high (4 KiB; I B for enclaves < 1 MiB) v Deterministic
S Page table FLUSH+RELOAD [72] Code + data X Low (32 KiB) Low

8 CorYCAT Code v High (instruction) v Deterministic

Comparison to other Attacks

* Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)

Attack Code/Data Granularity Noise

'g DRAM row buffer conflicts [74] Code + data X Low (1-8KiB) X High

g PRIME+PROBE cache conflicts [15, 30, 47, 58] Code + data X Med (64-512 B cache line/set) Med

E Read-after-write false dependencies [46] Data v High (4B) X High

; Branch prediction history buffers [24, 34, 44] Code v High (branch instruction) Low

'5; Interrupt latency [71] Code + data v High (instruction latency class) X High

5. Port contention [3] Code v High (u-op execution port) x High

T:) Page faults [80] and page table A/D bits [72, 74] Code + data X Low (4 KiB) v Deterministic
§ [A-32 segmentation faults [29] Code + data ¥ Low/high (4 KiB; I B for enclaves < 1 MiB) v Deterministic
S Page table FLUSH+RELOAD [72] Code + data X Low (32 KiB) Low

S CorYCAT Code v High (instruction) v Deterministic

Comparison to other Attacks

* Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)
* Some can be mitigated by flushing/isolating microarchitectural buffers.

Attack Code/Data Granularity Noise
.8 DRAM row buffer conflicts [74] Code + data X Low (1-8 KiB) X High
% PRIME+PROBE cache conflicts [15, 30, 47, 58] Code + data X Med (64-512 B cache line/set) Med
g Read-after-write false dependencies [46] Data v High (4B) X High
: Branch prediction history buffers [24, 34, 44] Code v High (branch instruction) Low
'5; Interrupt latency [71] Code + data v High (instruction latency class) X High
5. Port contention [3] Code v High (u-op execution port) x High
T:) Page faults [80] and page table A/D bits [72, 74] Code + data X Low (4 KiB) v Deterministic
§ [A-32 segmentation faults [29] Code + data ¥ Low/high (4 KiB; I B for enclaves < 1 MiB) v Deterministic
S Page table FLUSH+RELOAD [72] Code + data ¥ Low (32KiB) Low
S CopPYCAT Code v High (instruction) v Deterministic

Comparison to other Attacks

* Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)
* Some can be mitigated by flushing/isolating microarchitectural buffers.
* Some only apply to legacy enclave (32-bit)

Attack Code/Data Granularity Noise
.8 DRAM row buffer conflicts [74] Code + data X Low (1-8 KiB) X High
% PRIME+PROBE cache conflicts [15, 30, 47, 58] Code + data X Med (64-512 B cache line/set) Med
g Read-after-write false dependencies [46] Data v High (4B) X High
: Branch prediction history buffers [24, 34, 44] Code v High (branch instruction) Low
'5; Interrupt latency [71] Code + data v High (instruction latency class) X High
5. Port contention [3] Code v High (u-op execution port) x High
T:) Page faults [80] and page table A/D bits [72, 74] Code + data X Low (4 KiB) v Deterministic
§ [A-32 segmentation faults [29] Code + data ¥ Low/high (4 KiB; I B for enclaves < 1 MiB) v Deterministic
S Page table FLUSH+RELOAD [72] Code + data ¥ Low (32KiB) Low
S CopPYCAT Code v High (instruction) v Deterministic

Comparison to other Attacks

Some only apply to legacy enclave (32-bit)

Some are limited to be applied SYRCHIONOUSLY.

Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)
Some can be mitigated by flushing/isolating microarchitectural buffers.

Attack Code/Data Granularity Noise

DRAM row buffer conflicts [74] Code + data X Low (1-8KiB) X High
PRIME+PROBE cache confliets"{#5730, 37, 53] Code + data X Med (64-512 B cache line/set) Med
Read-after-write falsesdependenéieS [46] Data v High (4B) X High
Branch prediction historysbuffers={247 34 44 Code v High (branch instruction) Low
Interrupt latency [71] Code + data v High (instruction latency class) X High
Port contention 3] Code v High (u-op execution port) X High

Page faults [80] and page table A/D bits [72, 74]
[A-32 segmentation faults [29]

Page table FLUSH+RELOAD [72]

CorYCAT

Ctrl channel | u-arch contention

Code + data
Code + data
Code + data
Code

X Low (4KiB)

X Low/high (4 KiB; 1 B for enclaves < 1 MiB)
X Low (32 KiB)

v High (instruction)

v Deterministic

v Deterministic
Low

v Deterministic

CopyCat and Macro-fusion

* Fused instructions are counted as one.
* Confirm/RE of the behavior of macro-fusion on Intel CPUs

» Macro-fusion is dependent on the program layout - deterministic

» The offset of a cmp+branch within a cache line
* True when hyperthreading is disabled (Intel SGX TCB)

Macro-Fusibility

Instruction TEST | CMP | AND | ADD | SUB | INC | DEC
JO/JNO v X v X X X X
JC/JB/JAE/JINB v v v XX
JE/JZ/INE/JINZ v v v v o Y
JNA/JBE/JA/INBE v v v v XX
JS/JNS/JP/JPE/JINP/JPO v X v X X X X
JL/JNGE/JGE/JNL/JLE/ING/JG/INLE | v v v oYY

https://en.wikichip.org/wiki/macro-operation_fusion

Conclusion

* Instruction Level Granularity

)] SGX Attacks
 Imbalance number of instructions l | l
* Leak the outcome of branches —— Software Dev
Responsibility Responsibility
. +
parch Side ___ Deterministic
Channel - Ctrl Channel

—» Thiswork

Conclusion

* Instruction Level Granularity
* Imbalance number of instructions

SGX Attacks

I
v v

e Leak the outcome of branches —— Software Dev
L. . . Responsibility Responsibility
* Fully Deterministic and reliable — !
Ty . . parch Side Deterministic
* Millions of instructions tested e — _Ctrl Channel

« Attacks match the exact leakage model

—» Thiswork

Conclusion

* Instruction Level Granularity —
* Imbalance number of instructions |

 Leak the outcome of branches T Software Dov
L. . . Responsibility Responsibility
* Fully Deterministic and reliable — !
Ty . . parch Side Deterministic
* Millions of instructions tested A | - Ctrl Channel

« Attacks match the exact leakage model of branches

« Easy to scale and replicate

* No reverse engineering of branches and —> Thiswork
microarchitectural components

- Tracking all the branches synchronously

Conclusion

* Instruction Level Granularity —
* Imbalance number of instructions |

 Leak the outcome of branches T Software Dov
L. . . Responsibility Responsibility
* Fully Deterministic and reliable — !
Ty . . parch Side Deterministic
* Millions of instructions tested A | - Ctrl Channel

« Attacks match the exact leakage model of branches

« Easy to scale and replicate

* No reverse engineering of branches and —> Thiswork
microarchitectural components

 Tracking all the branches synchronously
* Branchless programming is hard!

Future Directions - Other TEE Models

 Virtual Machine TEE
« AMD SEV
* Intel TDX

* What are other ways to interrupt a
TEE in the above models?

* What is the impact?
* Guest OSS
« Cryptographic Services
* Other Applications

. Target VM
GVA Service
Space R “**| Process
........ o
A
GPA vy Kernel v
Space .
........ — /
[| nv
Space lﬁ: - ‘ S
Al
i G @ @ RAM

TRUSTEDBYTD

NOT TRUSTEDBYTD

Future Directions - Non-cryptographic Application of Enclaves

» Data-dependent secret-processing applications
 Confidential Deep Learning (
 Trusted Database (EnclaveDB)

« Automated Leakage Analysis and Exploit Generation

* Fuzzing and Taint Analysis L - -- -

Pin ?

* Dynamic Analysis

Future Directions - Mitigation

« Compiler-based Solutions

 Balancing secret-dependent branches with dummy instructions

 System-level Mitigation
* Self-paging Enclave (Autarky)

|
Enclave

1
(trusted) E mov %rax,(0x1060) : r.n.x;v %rax,(9x16000)
- [
: - ,
AEX LEEXIT ERESUME
— : 1
oS Page fault . : Page fault
(untrusted) handler : handler
SGX HW | Paging ISA
(trusted))

Figure 2. Autarky enforces invocation of an enclave’s self-
paging handler on each page fault.

. - https://github.com/j
Dardel Moghim! ovanbulck/sgx-step

@danielmgmi

https://github.com/jovanbulck/sgx-step

