
Revisiting Isolated and Trusted Execution via
Microarchitectural Cryptanalysis

by

Ahmad "Daniel" Moghimi

A Dissertation Submitted to the Faculty

of the

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

Head of Department
Professor Donald R. Brown, Worcester Polytechnic Institute

Dissertation Committee
Professor Thomas Eisenbarth, University of Luebeck

Dissertation Committee
Professor Simha Sethumadhavan, Columbia University

Dissertation Advisor
Professor Berk Sunar, Worcester Polytechnic Institute

Abstract

Shared computing resources shaping modern computing and the internet ecosystem
introduce new security and privacy challenges. For instance, in a virtualized environment
like the cloud, multiple users with virtually isolated security domains share the CPU and
system memory. A malicious user may exploit microarchitectural side channels like the
cache timing to snoop on other users’ memory access patterns in this environment. Such
memory snooping attacks are also possible in other shared execution environments such as
web browsers and smartphones. As a result of these attacks, security-sensitive applications,
e.g., cryptographic protocols, require extra care against the danger of leaking secret bits
to adversaries. Additionally, some attacks like the rowhammer go beyond compromising
confidentiality. On a system with shared memory, rowhammer can compromise the
integrity of applications by intentionally inducing memory errors.

Microarchitectural side channels are severe threats to security and privacy concerning
the growth of multitenancy, Consequently, researchers have recently proposed several
mitigations to circumvent these attacks. However, these mitigations, for the most part, are
based on the limited understanding of the microarchitecture and potential attack vectors.
As some of our contributions highlight, we can construct new information channels based
on low-level analysis and micro-benchmarking of the CPU’s memory subsystem. Based
on our findings, we propose multiple contention-based techniques that improve previous
attack vectors. By looking at the memory subsystem with more scrutiny, we show that
existing mitigations against memory-related side-channel leakage are insufficient.

The complex microarchitecture also exposes the software layer to a new class of
attacks, transient execution attacks. In contrast to the aforementioned contention-based
attacks, microarchitectural data sampling (MDS) allow a local adversary to leak the
actual data bits rather than memory access patterns. Therefore, attackers will have full
visibility to steal credentials and data from other users who run on the same CPU core.
However, manual analysis and testing of some transient execution attacks like the MDS do
not scale and limit our understanding of these vulnerabilities’ root causes. To automate
sophisticated proof of concepts and find new variants, we developed a tool by adopting

– i –

software vulnerability fuzzing techniques. With our automated approach, we provide new
insights, discover new exploitation techniques, and report new vulnerabilities.

Microarchitectural vulnerabilities go beyond affecting traditional software and security
boundaries. A prominent element of modern processors and shared computing envi-
ronments are the support for hardware-based trusted computing. For example, trusted
execution environments (TEEs) are now available on various processors, including super-
scalar CPUs, mobile processors, and embedded systems. TEEs promise a wide range
of security and privacy applications, such as privacy-preserving artificial intelligence and
digital right management. However, TEEs face a more challenging threat model, especially
for microarchitectural security, as the system software, including the operating system, is
considered malicious. While it is intuitive that TEEs are as vulnerable to microarchitectural
attacks, we present that the unique adversarial model suggested by a TEE like the Intel
SGX exposes the trusted computation to unusual and innovative attack vectors. We
show that an adversarial operating system can exploit its system-level capabilities and
architectural features to leak fine-grained and deterministic side-channel information from
secure enclaves, which are not possible in traditional threat models.

TEEs are not the only relevant hardware-based trusted computing solution. crypto-
graphic co-processors like the trusted platform module (TPM) are responsible for executing
cryptographic operations in a physically-isolated fashion. TPMs even promise security
guarantees against more intrusive side-channel attacks like physical probing and tampering.
While TPM devices claim such security guarantees through external evaluation and security
certification, we show that the obscurity of these cryptographic co-processors leaves them
vulnerable to classic timing attacks. As a result, we develop high-precision timers to
perform timing analysis of cryptographic operations inside TPMs empirically.

Conclusively, to show the impact of security failures due to the above software-related
side-channel and microarchitectural attacks, we demonstrate several realistic end-to-end
attacks. In particular, cryptographic protocols are an essential ingredient of security primi-
tives for network security, secure software isolation, and trusted execution environments.
By combining the newly discovered attack vectors with theoretical cryptanalysis techniques
and devising new algorithmic approaches, we demonstrate practical attacks to steal secret
keys from encryption and digital signature operations. Our findings include discovering
several critical vulnerabilities on deployed cryptographic products ranging from standard
cryptographic libraries to hardware-based security solutions.

In retrospect, we present the ideas, tools, and techniques under the framework of
microarchitectural cryptanalysis. This framework helps the community to have a better
understanding of security issues concerning complex microarchitectures. We discuss
the importance of applying microarchitectural cryptanalysis to future systems having a
heterogeneous microarchitecture. Microarchitectural cryptanalysis highlights the essential

– ii –

need for developing analysis and automation tools in this direction. We hope that our
contribution will help the reader rethink threat models, design choices, and engineering
practices for secure systems development.

– iii –

Acknowledgements

My deepest gratitude goes to my dissertation advisor, Professor Berk Sunar, for his trust
and full support throughout my years of Ph.D. studies. He gave me lots of freedom to
pursue new and exciting research ideas, and it was always a pleasure to work with him on
several projects closely. I would also like to thank Professor Thomas Eisenbarth, who was
initially my primary advisor at the ECE department of WPI. After he moved to pursue a
new role at the University of Luebeck, we continued to have successful collaborations.
I also want to thank my external committee member, Professor Simha Sethumadhavan
from Columbia University, for his time, attention, and feedback on this dissertation. I
would also like to acknowledge my colleagues, Berk, Saad, and Zane from WPI, Thore,
Ida, and Jan from the University of Luebeck for great discussions during several projects.

Next, I would like to acknowledge the talented researchers from other institutions
whom I was honored to work with during several projects: I learned a lot from and enjoyed
working with Moritz Lipp and Michael Schwarz from TU Graz, and Jo Van Bulck from
KU Leuven. Professor Daniel Gruss from TU Graz and Professor Frank Piessens from KU
Leuven were tremendously encouraging, supportive, and communicative during several
collaborations. I learned more about cryptanalysis from Professor Nadia Heninger, who
hosted me as a visiting graduate student at the University of California, San Diego. She
immensely helped me to improve the quality of my publications.

The work in this dissertation was supported by the US National Science Foundation under
grants no. 1618837, and 1814406. Additional funds were provided by research gifts from
Intel and Cloudflare.

– iii –

Publications

The majority of materials produced as part of this work have been published earlier in
peer-reviewed conference proceedings and journals, including:

• the Usenix Security Symposium [187, 247, 248, 248],

• the ACM Computer and Communications Security [61, 300],

• the IEEE Security & Privacy [349],

• the IACR Conference and Transactions on Cryptographic Hardware and Embedded
Systems [82, 245, 367],

• the Cryptographers’ Track at the RSA Conference [244],

• the International Journal of Parallel Programming [246],

• the Annual Computer Security Applications Conference [368].

As the main contributor, I have incorporated the following publications directly with minor
editorials to shape this dissertation’s content.

1. D Moghimi, J Van Bulck, N Heninger, F Piessens, B Sunar. "CopyCat: Controlled
Instruction-Level Attacks on Enclaves" The 29th USENIX Security Symposium.
2020.

2. D Moghimi, M Lipp, B Sunar, M Schwarz. "Medusa: Microarchitectural Data
Leakage via Automated Attack Synthesis" The 29th USENIX Security Symposium.
2020.

3. D Moghimi, B Sunar, T Eisenbarth, N Heninger. "TPM-Fail: TPM meets Timing
and Lattice Attacks" The 29th USENIX Security Symposium. 2020.

4. S Islam, A Moghimi, I Bruhns, M Krebbel, B Gulmezoglu, T Eisenbarth, B Sunar.
"SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks" The
28th USENIX Security Symposium. 2019.

– iv –

5. A Moghimi, J Wichelmann, T Eisenbarth, B Sunar. "MemJam: A False Depen-
dency Attack against Constant-Time Crypto Implementations" (Extended Version)
International Journal of Parallel Programming 47.4 (2019).

6. A Moghimi, T Eisenbarth, B Sunar. "MemJam: A False Dependency Attack
against Constant-Time Crypto Implementations in SGX" Cryptographers’ Track at
the RSA Conference. 2018.

I have excluded the following publications from this dissertation. We mention them when
it is appropriate as part of our related contributions.

7. Z Weissman, T Tiemann, D Moghimi, E Custodio, T Eisenbarth, B Sunar.
"JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms"
IACR Transactions on Cryptographic Hardware and Embedded Systems. 2020, 3
(Jun. 2020).

8. J Van Bulck, D Moghimi, M Schwarz, M Lipp, M Minkin, D Genkin, Y Yarom, B
Sunar, D Gruss, F Piessens."LVI: Hijacking Transient Execution through Microarchi-
tectural Load Value Injection" The 41st IEEE Symposium on Security and Privacy.
2020.

9. M Schwarz, M Lipp, D Moghimi, J Van Bulck, J Stecklina, T Prescher, D Gruss.
"ZombieLoad: Cross-Privilege-Boundary Data Sampling" Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 2019.

10. M Minkin, D Moghimi, M Lipp, M Schwarz, J Van Bulck, D Genkin, D Gruss, F
Piessens, B Sunar, Y Yarom. "Fallout: Reading Kernel Writes From User Space"
arXiv preprint arXiv:1905.12701 merged with Store-to-Leak (arXiv:1905.05725),
under Canella et al. "Fallout: Leaking Data on Meltdown-resistant CPUs" Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 2019.

11. J Wichelmann, A Moghimi, T Eisenbarth, B Sunar. "MicroWalk: A Framework
for Finding Side Channels in Binaries" Proceedings of the 34th Annual Computer
Security Applications Conference. 2018.

12. F Dall, G De Micheli, T Eisenbarth, D Genkin, N Heninger, A Moghimi, Y Yarom.
"CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache
Attacks" IACR Transactions on Cryptographic Hardware and Embedded Systems.
2018, 2 (May 2018).

– v –

13. A Moghimi, G Irazoqui, T Eisenbarth. "CacheZoom: How SGX Amplifies The
Power of Cache Attacks" International Conference on Cryptographic Hardware and
Embedded Systems. Springer, Cham, 2017.

– vi –

CONTENTS

Contents

1 Introduction 1
1.1 Computer Security and Cryptography 2

1.1.1 Communication Security . 2
1.1.2 Resource Sharing and Secure Isolation 4
1.1.3 Trusted Computing . 6
1.1.4 Pitfalls of Security Engineering 9

1.2 Microarchitectural Security . 14
1.3 Contributions . 17

1.3.1 Main Contributions . 17
1.3.2 Other Contributions . 20

1.4 Outline of the Work . 23

2 Uncovering Microarchitectural Side Channels 24
2.1 CPU Microarchitecture . 24

2.1.1 Out-of-order and Speculative Execution 25
2.1.2 Memory Subsystem . 27
2.1.3 Multithreading . 33

2.2 Microarchitectural Side Channels . 34
2.2.1 Cache Attacks . 34
2.2.2 Generalization to other Shared Resources 36
2.2.3 Side-channel Leakage in Practice 37
2.2.4 The Rowhammer Paradigm . 38

2.3 MemJam Attack on Virtual Address Aliasing 39
2.3.1 False Dependencies due to 4k Aliasing 40
2.3.2 Memory Dependency Fuzz Testing 41
2.3.3 Leaking with Intra-Cache-Line Resolution 45

2.4 Beyond MemJam: Physical Address Aliasing 48
2.4.1 Speculative Load Hazards . 49
2.4.2 The Spoiler Leakage . 51

– vii –

CONTENTS

2.4.3 Boosting Rowhammer and Cache Attacks with Spoiler 58
2.4.4 Tracking Speculative Loads with Spoiler 61

2.5 Summary . 64

3 Microarchitectural Data Leakage via Automated Synthesis 66
3.1 Transient-execution Attacks . 67

3.1.1 Spectre & Meltdown . 67
3.1.2 Microarchitectural Data Sampling 68

3.2 Automatically Exploring Meltdown Attacks 70
3.2.1 Introducing Transynther 71
3.2.2 Synthetisation Phase . 71
3.2.3 Evaluation phase . 73
3.2.4 Classification Phase . 74
3.2.5 Transynther Results . 76

3.3 Medusa: Pre-filtering Data . 81
3.3.1 Leakage Analysis . 82
3.3.2 Exploitation Methodology . 85
3.3.3 WC in Real-World Software . 87
3.3.4 Leakage Performance of Medusa 89

3.4 Discussion . 91
3.4.1 Extending Transynther . 91
3.4.2 Meltdown Root Cause Generalisation 94

4 Controlled Instruction-Level Attacks on Enclaves 96
4.1 Attack’s Characterization . 96

4.1.1 Microarchitectural Contention 97
4.1.2 Controlled-Channel Attacks . 99

4.2 CopyCat: Instruction-Counting Side Channel 100
4.2.1 Introducing CopyCat . 101
4.2.2 Building the Interrupt Primitive 102
4.2.3 Instruction-Level Page Access Traces 104

4.3 The Effectiveness of CopyCat . 105
4.3.1 Branch Shadow-Resistant Code 106
4.3.2 Defeating Branch Shadowing Defenses 107

4.4 Discussion . 109

5 Timing Analysis of Physically-isolated Elements 111
5.1 Trusted Platform Module . 111

5.1.1 TPM Deployment . 112

– viii –

CONTENTS

5.1.2 Vulnreabilities and Shortcomings 113
5.2 Remote Timing Attacks on TPM . 114

5.2.1 Precise Timing Measurement 116
5.2.2 Timing Analysis of ECDSA . 118
5.2.3 Discovered Vulnerabilities . 124

5.3 Summary . 127

6 Microarchitectural Cryptanalysis 131
6.1 MemJam-Based Correlation Analysis 131

6.1.1 Breaking Pseudo-Constant-Time 3-DES 133
6.1.2 Breaking Pseudo-Constant-Time AES 136
6.1.3 Key Recovery from Cache-Protected SM4 140
6.1.4 MemJam AES Key Recovery Results in SGX 145
6.1.5 Discussion on MemJam Cryptanalysis 147

6.2 Lattice Attacks on ECDSA . 148
6.2.1 Digital Signature Algorithms . 149
6.2.2 Hidden Number Problem and Lattices 150
6.2.3 TPM meet Timing and Lattice Attacks 154
6.2.4 Network Timing Attack on TPM ECDSA 159
6.2.5 Breaking ECDSA Timing Protection in SGX 164

6.3 Template MDS Attack on Constant-time RSA 166
6.3.1 RSA Cryptosystem . 166
6.3.2 Sampling Partial RSA Secrets from OpenSSL 167
6.3.3 Recovering full RSA keys using Lattice Attacks 169

6.4 Single-trace Attacks on Public Key Schemes 171
6.4.1 Unleashing CopyCat on WolfSSL 173
6.4.2 Single-Trace Attack on DSA Signing 177
6.4.3 Single-Trace Attacks on RSA Key Generation 178
6.4.4 CopyCat-Based Cryptanalysis 180

7 Revisiting Isolated and Trusted Execution 190
7.1 Countermeasure Discussions . 190

7.1.1 Attack Detection . 190
7.1.2 Hardening Applications . 193
7.1.3 Architectural Fixes and Mitigations 196
7.1.4 Coordinated Vulnerability Disclosure 201

7.2 Open Problems . 203
7.2.1 General-purpose Software . 203

– ix –

CONTENTS

7.2.2 Nonubiquitous and Heterogenous Architecture 205
7.3 Finale . 206

7.3.1 Assessment check-list . 206
7.3.2 Conclusion . 208

– x –

LIST OF FIGURES

List of Figures

1.1 Security technologies and adversaries 9

2.1 Schematic of a superscalar CPU . 25
2.2 Virtual address translation . 28
2.3 Memory order buffer . 31
2.4 MemJam hyperthrading scenario . 42
2.5 Code snippet for dependency analysis 42
2.6 Read-after-read (RaR) histogram . 43
2.7 Write-after-read (WaR) histogram . 44
2.8 Read-after-write (RaW) histogram . 45
2.9 Intra-cache-line Leakage . 46
2.10 Read-after-weak-Write (RawW) histogram 46
2.11 Raw conflict and multiple read analysis 47
2.12 Speculative load in a hypothetical pipeline 50
2.13 Dependency check logic . 51
2.14 Spoiler and correlated events . 53
2.15 Spoiler correlation with HPC events 54
2.16 Step-wise behavior of Spoiler . 55
2.17 Histogram of load measurement compared with various stores 57
2.18 Relation between leakage peaks and the physical page numbers 61
2.19 Depth of Spoiler leakage in the pipeline 62
2.20 Execution time of mincore system call 63
2.21 The effect of Spoiler on TLB flush 64

3.1 Transynther phases . 71
3.2 Heatmap of performance counters . 76
3.3 Leaking values with Medusa from rep mov 84
3.4 Number of fill buffer entries . 85
3.5 The cache-line offsets and their relationship with Medusa 86

– xi –

LIST OF FIGURES

4.1 Balanced if/else statement example . 105
4.2 Balanced page-aligned switch statement example 106
4.3 Compiler mitigationfor branch prediction side channels 109

5.1 TPM illustration . 112
5.2 Histogram of ECDSA (NIST-256p) - Nuvoton TPM 120
5.3 Histogram of ECDSA (NIST-256p) - Infineon TPM 120
5.4 Box plot of ECDSA (NIST-256p) - Infineon TPM 121
5.5 Histogram of RSA-2048 - STMicroelectronics 122
5.6 Histogram of RSA-2048 - Infineon TPM 122
5.7 Histogram of RSA-2048 - Intel fTPM 123
5.8 Histogram of RSA-2048 - Nuvoton TPM 123
5.9 Histogram of ECDSA (NIST-256p) - STMicroelectronics 124
5.10 Box plot of ECDSA (NIST-256p) - STMicroelectronics 125
5.11 Histogram of ECDSA (NIST-256p) - Intel fTPM 126
5.12 Box plot of ECDSA (NIST-256p) - Intel fTPM 127
5.13 Histogram of ECSchnorr (NIST-256p) - Intel fTPM 128
5.14 Histogram of ECDSA (BN-256) - Intel fTPM 128
5.15 STMicroelectronics chip layout . 129

6.1 DES block structure . 134
6.2 Correlations for 3-DES key recovery . 137
6.3 Constant cache-access pattern for AES S-Box 138
6.4 Linearity of the number of accesses to the first block and AES execution 139
6.5 Correlations for AES key recovery results 140
6.6 Correlations for 4 key bytes - AES . 141
6.7 Rank analysis of AES key recovery . 142
6.8 SM4 Feistel Structure . 142
6.9 The timing correlations for guessing one of the SM4 key bytes 144
6.10 Correlations for SM4 6-bit keys of the last 4 32-bit round key 144
6.11 Accumulated correlations for SM4 8-bit keys after 5 rounds 145
6.12 Correlations for 6 key bytes - SGX AES Key recovery 146
6.13 Rank analysis of AES key recovery - SGX 147
6.14 Intel fTPM key recovery - system adversary 156
6.15 [Intel fTPM key recovery - user adversary 158
6.16 Histogram of ECDSA (NIST-256p) over UDP 160
6.17 [Intel fTPM key recovery - remote UDP 161
6.18 IKE handshake with TPM . 162

– xii –

LIST OF FIGURES

6.19 Histogram of ECDSA (NIST-256p Curve) - Remote StrongSwan VPN . . 163
6.20 Remote StrongSwan attack key recovery 164
6.21 Histogram and score of most likely 6-byte leakages with Medusa 168
6.22 Histogram and score of most likely 6-byte leakages (AVX256-P4) 169
6.23 Control flow of the BEEA as implemented by fp_invmod_slow 175
6.24 Example trace from fp_invmod_slow 176
6.25 Control flow of BEEA in fp_invmod 177

– xiii –

LIST OF TABLES

List of Tables

2.1 Intel CPU families and MemJam leakage channels 48
2.2 1MB aliasing on various architectures 56

3.1 The performance counters used for Transynther analysis 75
3.2 Tested Environments. 77
3.3 Leakage variants discovered by Transynther. 78
3.4 A comparison of MDS attacks . 83
3.5 Variant II performance for various memory types and victim operations. . 87
3.6 rep mov instruction within cryptographic libraries. 88

4.1 Characterization of demonstrated Intel SGX attacks 98

5.1 The CRB control area . 117
5.2 Tested Platforms with Intel fTPM or dedicated TPM device. 119

6.1 Vulnerability of DES, SM4 and AES implementations in Intel IPP 148
6.2 Summary of our TPM-Fail key recovery results 165
6.3 lattice-based key recovery on wc_ecc_mulmod_ex 166
6.4 Leakage scores used for the template Coppersmith attack (q prime). . . . 170
6.5 Leakage scores used for the template Coppersmith attack (d private key). 171
6.6 An overview of applicability of CopyCat on cryptographic libraries . . . 181

7.1 List of tested microcodes on a Core i5-1035G1 CPU 200

– xiv –

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Computer security professionals and cryptographers have spent decades designing systems
with more robust security promises. However, due to the complexity of engineering
computers, bug-free and reliable implementation of these designs is challenging. In the
past, these challenges have introduced numerous vulnerabilities that could damage the
economy, privacy, and reputation of individuals and companies. On the bright side,
recent designs and development tools can eliminate the majority of traditional software
vulnerabilities or mitigate their risk on a large scale using a combination of hardware and
software techniques [4, 221]. While these efforts have partially improved security and
privacy, software execution on commodity processors may not be as reliable as perceived.

As we have rapidly filled data centers, workspaces, and homes with extremely efficient
processors and have added new features, we have also added more complexity to the
hardware design and engineering. As a result, security-critical software and cryptographic
implementations are executed based on uncertainties about the underlying hardware that
may lead to new classes of vulnerabilities. In this work, we uncover some of the complexity
of modern computing hardware with particular attention to security and privacy. More
specifically, we focus on the interface between the hardware and software and discuss
hardware-related security issues exploitable from the software. These security issues, if
exploited, challenge existing security and isolation boundaries. In this chapter, after setting
the stage with the preliminaries of security technologies (§1.1), we further motivate the
goal of our work (§1.2). Then, we provide an overview of our contributions (§1.3) and lay
out the organization of this writing (§1.4).

– 1 –

CHAPTER 1. INTRODUCTION

1.1 Computer Security and Cryptography

Over time, the diversity of emerging threat models has encouraged designing several
complimentary security primitives and protocols. In this section, we give a high-level
overview of communication security (§1.1.1), secure isolation techniques in multitenant
environments (§1.1.2), and trusted computing (§1.1.3). Finally, we discuss the historical
pitfalls of engineering and implementations issues that undermine the goal of secure
designs (§Section 1.1.4).

1.1.1 Communication Security

Network security protocols. Securing the communication between two separate
computers of any kind, e.g., servers, workstations, mobile computers, is essential to defend
against network adversaries. Nowadays, it is rare to find a security-critical internet service
that does not use one of the standard security protocols for protecting the communication
between service providers and clients. Security protocols such as Transport Layer Security
(TLS) [88], Internet Key Exchange (IKE) [144], and Secure Shell (SSH) [387] encrypt
the transmitted data between a client and a server, or more broadly, the two endpoints
over a communication channel. A secure encryption scheme like the Advanced Encryption
Standard (AES) [81] encrypts the data with a high-entropy key that is not guessable using
brute-force attacks, i.e., trying out all the possible key combinations. In theory, since
only the client and server have access to this encryption key, a passive man-in-the-middle
(MITM) attacker who can only read the traffic between the client and the server, can not
access the transmitted information in plaintext.

More broadly, security protocols like the TLS provide an end-to-end secure commu-
nication channel by also protecting against active MITM attackers who try to modify
the traffic or impersonate an endpoint inside the network. For this, a typical protocol
also supports secure key establishment based on the Diffie-Hellman (DH) scheme [280],
authentication based on a public-key cryptographic (PKC) scheme like the elliptic curve
digital signature algorithm (ECDSA) [191], and integrity measurement using a reliable
cryptographic hash algorithm like the SHA-3 [95]. In reality, several other cryptographic
primitives and protocol-level designs are involved in a protocol like TLS [77]. In a nut-
shell, these protocols glue several cryptographic schemes to provide a secure end-to-end
communication channel with guarantees such as confidentiality, integrity, and authenticity.

Computational security and cryptanalysis. The claimed security guarantees of a
cryptographic scheme rely on the computational capability of available computers. In
this respect, a cryptographic design is considered secure if adversaries can not execute

– 2 –

CHAPTER 1. INTRODUCTION

brute-force or any other cryptanalysis attacks efficiently. Without any breakthrough in
computing hardware or discovering a severe design flaw in a target scheme, brute-force
attacks take millions of years to try all possible key and input combinations required
to succeed in an attack. However, in the past, cryptanalysts have discovered several
design flaws and vulnerabilities in earlier versions of security protocols and the underlying
cryptographic schemes. Some of these design flaws allow adversaries to efficiently
undermine the claimed security guarantees, or worse, extract secret keys and information
by just observing the input and output of algorithms. For example, earlier versions of
TLS used hash functions such as MD5 [283] and SHA1 [96]. Today, due to fundamental
design issues, MD5 and SHA1 are considered insecure, as adversaries can trivially find hash
collisions for these algorithms [325, 361]. Researchers have also demonstrated several
other attacks against earlier versions of a protocol like TLS due to design flaws at the
protocol level [9, 23, 250, 310]. Thankfully, the community has addressed previous design
issues in the latest specification of TLS, and they have deprecated the usage of such
insecure cryptographic primitives [279]. While there is a chance for vulnerabilities to be
found in the future, we consider state-of-the-art cryptographic designs to have strong
security guarantees against traditional cryptanalysis [80].

Can quantum computers break it all? We mentioned that the claimed security
of cryptographic schemes also depends on whether we can build computers that are
exceptionally capable of executing specific cryptanalysis or brute-force attacks.

Theoreticians have argued that once quantum computers reach a particular capability
(maybe in a few decades), they can break the security of some of the cryptographic
algorithms that were previously known to be secure by design. For example, the RSA
algorithm used for encryption and digital signatures relies on the difficulty of factoring
large integers. However, Shore’s algorithm proves that factoring large integers is relatively
trivial on a futuristic quantum computer with thousands of qubits [313]. Therefore,
RSA will not be secure, and all previous RSA keys are deemed vulnerable once quantum
computers reach the estimated capability. Although post-quantum computers with such
capability are not accessible today, cryptographers have been preparing for security in a
post-quantum world; they have already designed several alternative schemes that will be
secure even against a powerful quantum computer [71].

With all these improvements and considerations in cryptography, we can conclude that
humans have become significantly good at designing cryptographic protocols and schemes
that are incredibly secure today and even in the future. However, in practice, these designs
fall short in protecting assets when implemented and executed using software, hardware,
or a combination of both. Understanding security vulnerabilities stemming from computer

– 3 –

CHAPTER 1. INTRODUCTION

architectures is orthogonal to securely deploying these theoretically secure mathematical
abstractions today and in the future.

How things are executed. One can implement cryptographic schemes in software that
runs on a general-purpose processor. Alternatively, for a more efficient execution, hardware
engineers may develop application-specific integrated circuit (ASIC) [317] or logics for field
programmable gate arrays (FPGAs) [338]. In practice, for most use cases, cryptographic
schemes and protocols are only partially implemented in hardware. End-to-end use cases
combine software and hardware techniques. The software executes the higher-level and
more complex algorithms, and the software interface with specific hardware blocks to do
certain low-level logic. For example, nowadays, most general-purpose processors from
Intel, AMD, and ARM support specific instructions to facilitate AES encryption [13].
Proprietary hardware logic within these processors efficiently executes these instructions.
Despite these instructions’ availability, the software is still responsible for implementing
the high-level logic of encryption and decryption, programming and managing keys, modes
of operations, and padding schemes used in security protocols and applications.

During the design and development of hardware or software for cryptography, engineers
may introduce new security vulnerabilities into the system. These vulnerabilities may occur
due to various reasons including, but not limited to, human errors [94], invalid assump-
tions [357], or improper threat modeling [373]. The complexity of modern computing
systems provides a suitable environment for such failures. Vulnerabilities that occur during
the engineering phase provide a considerable gap between theoretical security guarantees
and practical ones. Imagine that a developer mistakenly programs 128-bit encryption keys
for AES with a random number generator that only provides 40 bits worth of entropy. A
brute-force attack on AES-128 should take up to 2128 triage, which is out of reach on any
computer, but as soon as attackers find out how the keys are generated, they can narrow
down their attempts to 240 triage, which can be computed even on a personal computer.

Although we just outlined such security engineering flaws in the context of cryptographic
schemes, any security-critical algorithm may as well suffer from vulnerabilities not seen as
part of the abstract design. In general, as we will discuss more extensively in Section 1.1.4,
the promised security claimes in abstract or mathematical designs are not always guaranteed
when one transforms the abstraction into concrete designs and implementations of hardware
or software.

1.1.2 Resource Sharing and Secure Isolation

For a while, computers were operated by a single user to perform a single task. The
single-user single-task computing model can not achieve the best performance from the

– 4 –

CHAPTER 1. INTRODUCTION

growing number of transistors on processors and the resulting rich computing resources.
Consequently, operating systems started to support multi-tasking. Network applications
have encouraged multi-user use cases in which different users can log in with their creden-
tials into a single workstation. With the growing computation capability of workstations,
rich web content driven by dynamic programming environments like JavaScript has become
a reality [252]. Data centers in the cloud environment have become capable of hosting
hundreds of processor cores on a single machine used by several service providers. In
summary, secure sharing and management of hardware resources among different users on
the same machine play essential roles in optimizing the usage of computation resources.

Multiple users with different security and privacy roles execute separate software
instances on the same processor and memory subsystem in such multitenant environments.
It is intuitive that without a mechanism to isolate applications from accessing each others’
memory, a malicious user would steal credentials, cryptographic keys, and other users’
information. Modern computing systems consider several isolation boundaries to prevent
such compromises. Web browsers have to isolate dynamic content, e.g., JavaScript
programs from untrusted origins, to access sensitive information like the session cookies of
other origins or systems credentials. Applications such as web and mobile apps require to
be isolated, as each application has different security roles and permissions. In the cloud
environment, service providers must isolate the computing spaces rented by untrusted
users, so adversaries can not scan the entire memory to find the sysadmin credentials and
information from all customers co-located on the same machine.

Secure isolation and local adversaries. Network protocols aim to isolate and pro-
tect the transmitted information across separate computers from network adversaries.
Additionally, with multitenancy on both client- and server-side computers, secure isola-
tion of different applications that run on shared computing resources are necessary to
block local adversaries and secure network credentials. Hardware and software vendors
have worked together to design several architectural support for the isolation of different
security domains on the operating system (OS), cloud environments, mobile devices,
and web browsers. Some of these isolation techniques are software-only approaches
based on programming languages and compiler technologies, e.g., JavaScript. Other
hardware-supported techniques isolate different security domains based on hardware-
software contracts supported by the processor and managed by the system software, e.g.,
OS or hypervisor.

The instruction set architecture (ISA) of the processor provides a hardware-software
contract for the modern OS to implement several resource management and security
features such as virtual memory manager, task scheduler, assigning roles, and enforcing
permissions [330]. Using these features, the OS provides process-level isolation, a virtually

– 5 –

CHAPTER 1. INTRODUCTION

isolated environment for each process, which prevents a malicious process from reading or
modifying other processes’ memory content. Processes can also be assigned to different
roles. Therefore, a user-level process will only have access to a limited set of resources,
and it can not modify system-level resources to subvert process- and user-level isolations.
However, if malicious users find and exploit a vulnerability in the OS kernel, driver software,
other privileged processes, or the hardware, they can escalate their privilege [70].

Similar to process-level isolation, the ISA supports other features like the extended
page tables to allow full-system virtualization and isolation. In this scenario, a hypervisor
software manages physical resources, and each virtual machine (VM) executes a full-
featured guest OS, e.g., Linux, Microsoft Windows. By design, the guest OS should not
have access to the file system, memory, and in general data of other guest OSs or the
hypervisor, i.e., VM-level isolation. However, if adversaries find vulnerabilities inside the
hypervisor software or the hardware, they have a chance to compromise the entire system
[272, 366].

Programming languages can enable another form of architectural isolation by defining
a new architecture on top of the native ISA. For example, a widespread use case of such
software-based isolation is to sandbox programs written in JavaScript or web assembly
(Wasm) [139]. This scenario is useful when a service provider or a malicious endpoint
provides the untrusted code. The runtime environment executes the untrusted code
within the same virtual address space as the browser’s process. However, the runtime
environment provides architectural guarantees to contain the untrusted code to access
well-defined virtual address space sections.

As we extensively discuss in this dissertation, architectural guarantees do not always
translate to strong isolation due to processors’ microarchitecture. For example, a microar-
chitectural attack like the Spectre [207] can compromise the confidentiality guarantee of all
of these isolation techniques, as it allows microarchitectural data to become visible at the
architecture level. Therefore, it is essential to understand the severity of hardware-based
vulnerabilities that can be exploited by the software. Unlike software vulnerabilities, a
single microarchitectural vulnerability may allow subversion of several forms of isolation
boundaries [127].

1.1.3 Trusted Computing

Even if we assume that all the security protocols and isolation techniques described earlier
are going to work flawlessly, we still have to trust many entities to store and process
private data such as financial information, medical data, and personal contacts. A single
computer on the network includes software components and hardware parts from tens of
different manufacturers. Users have to trust these entities as they voluntarily give up their

– 6 –

CHAPTER 1. INTRODUCTION

data ownership as soon as they start using the network and computing infrastructure. In
the current internet ecosystem, we assume that these manufacturers are neither malicious
nor hackable, which the latter is a big stretch considering recent data breaches [60, 124].

In an ideal world, we would like users to maintain ownership of their data, while
computers should only serve users and process data without accessing it in plaintext. To
achieve this goal, cryptographers have designed several mathematical solutions under
the umbrella of fully-homomorphic encryption (FHE) [118]. FHE allows computers to
compute with encrypted data in a unique form without enabling the data to be revealed.
Each user encrypts their data with their secret FHE key that transforms the data into
this particular encrypted form. Later on, the user can recover the result of this encrypted
computation by decrypting the encrypted results. As a result, with FHE, the user only
has to trust a single workstation owned by the user to encrypt the data and decrypt the
encrypted output.

Hardware-based trusted computing. Trusted computing generally refers to allowing
users to take ownership of their data by redefining trust boundaries across computing
systems. Although FHE can theoretically promise this ideal notion, it is not practical, as
it requires a tremendous amount of computation and memory. Consequently, deployed
trusted computing solutions trade this idealism with efficiency and practicality by relying
on hardware-based trusted computing technologies. In this case, the user relies on specific
hardware features and certain assumptions about the threat model to partially achieve
trusted computation. For example, a cryptographic co-processor allows the user to
trust a very restricted chip connected to the machine to perform critical operations like
cryptographic transactions. Users of this chip still require to trust the manufacturer to
perform trusted encryption and authentication, but they distrust the computation and
software running on the central processing unit (CPU). The manufacturers also have to
make particular assumptions about the adversarial model for developing this chip, e.g.,
Can attackers physically access the bus between the chip and the memory, decap the
chip, or induce glitches? Assuming that these assumptions have not underestimated
the attacker, the security chip provides a far from the ideal but usable notion of trusted
computing.

A side benefit of hardware-based trusted computing is to reduce the attack surface, as
security-critical information will be contained to a small subset of the system. Reducing the
attack surface is helpful since even without malicious intent, implementation vulnerabilities,
which compromise various components, can not access all the critical data. However,
we will see that these hardware-based trusted techniques may themselves suffer from
improper threat modeling and vulnerabilities.

– 7 –

CHAPTER 1. INTRODUCTION

Cryptographic co-processors generally provide strong isolation, i.e., physical separation
at the chip level. As a result, even if the entire CPU is compromised, attackers can not
access cryptographic keys stored within the chip. Like the Trusted Platform Module
(TPM) [342], some of these co-processors even promise security guarantees against
physical adversaries. The TPM standard defines a set of cryptographic primitives known
to be secure. These products also need to go under third-party security evaluation to
meet Common Criteria (CC) certification [341]. Such certifications should theoretically
improve the security of such products when it comes to implementation security. However,
we will see that this assurance is only as sound as the quality of tests, which is generally
a vague and proprietary process.

Trusted execution environments. While the physical separation of cryptographic
co-processors promises strong guarantees, they are only limited to execute a limited set
of cryptographic operations. They are also not suitable for executing computationally-
intensive operations, as they are generally developed based on low-powered embedded
processing technologies. Allocating high-performance computing resources solely to per-
form a limited number of operations is not an attractive option for processor manufacturers
dedicated to achieving a better performance.

Hardware-based techniques known as the trusted execution environment (TEE) rely on
the CPU architecture to draw new security boundaries. Manufacturers generally design and
implement TEEs to mitigate against system-level adversaries such as the OS, hypervisor,
or the BIOS software. Some TEEs like Intel SGX even promises isolation against physical
adversaries who try to access the memory bus [132, 174]. With a TEE like Intel SGX,
users can execute arbitrary computations inside architecturally isolated regions of the
memory and CPU without allowing the OS to access these regions at runtime. As a
result, manufacturers have repurposed these high-performance computing resources for
both trusted and regular computing.

The benefit of TEEs is that users can execute trusted applications efficiently and with
flexibility. Therefore TEEs have been used for a wide range of applications, including copy
protection [28], confidential computing [240], privacy-preserving machine learning [274],
and private blockchain transaction [46]. On the downside, with TEEs, security engineers
now have to defend against new software adversaries who have much more capability
than network or local adversaries. Microarchitectural attacks conducted by an adversarial
operating system is a new avenue of research that we have started looking into in
2016 [245, 347]. As we show in some of our contributions, a system-level adversary is
more successful in performing specific side-channel and microarchitectural attacks against
the trusted applications running on the same CPU. These attacks show that demonstrated

– 8 –

CHAPTER 1. INTRODUCTION

Hypervisor

OS OS

APP APP APP APP APP

TPM

OS

Browser APP

Applet Applet
3. Process-level

Isolation

2. VM-level
Isolation

5. Physical
Isolation

4. In-process
Isolation

Physical
Adversary

Local	
Adversary

Network
Adversary

Local	
Adversary

Hypervisor

OS

Enclave

APP

1. TEE
(SGX)

System	
Adversary

Figure 1.1: A traditional network adversary (top-right) targets the communication between
different computers. However, on the endpoints, we see several other threat models. For
a TEE (1), a compromised OS is a powerful adversary trying to steal information from a
secure module (enclave). In other isolated software environments (2, 3, 4), we see a local
adversary with minor privilege trying to compromise other apps, processes, or VMs. For a
physically-isolated device like TPM (5), a physical adversary is free to perform the most
intrusive attacks.

use cases of TEEs with overly optimistic performance metrics may provide a false sense
of security.

Figure 1.1 illustrates several different threat models that we have mentioned.

1.1.4 Pitfalls of Security Engineering

Abstract designs of the above security technologies have not always been immune to
vulnerabilities. Still, our community has established a better understanding of threat
modeling and secure design at this stage over the years. However, vulnerabilities occurring
at the engineering level are a widespread cause of systems’ practical insecurity, applying
to cryptographic protocols, isolation techniques, and hardware-based trusted computing
solutions. This section looks into some but not all of the common ways computers fail to
meet the promised security goals.

– 9 –

CHAPTER 1. INTRODUCTION

Design misuses. In 2010, George Hotz managed to break the copy protection feature
of the Playstation 3 gaming console due to improper usage of the ECDSA [150]. ECDSA
is considered secure by design, but Playstation used ECDSA without proper initialization
of the nonce; hence, all generated signatures were using the same value. Recovering the
private key from this incorrect usage of ECDSA is as easy as computing two signatures
and subtracting them from each other, which entirely breaks the security guarantee of
applications and protocols using it.

Developers may mistakenly or willingly omit specific details during the concrete execu-
tion of these protocols. Generally, taking the mathematical formulation of cryptographic
protocols and transforming it into software or hardware requires domain knowledge and
expertise across domains. As a result, the lack thereof such expertise results in misusing a
secure design and void security guarantees, which is a widespread issue for cryptographic
protocols. In particular, in the past ten years, we have seen several lousy usages of
PKC schemes, which shows how this mathematical technique’s novelty introduces such
uncertainties for developers. For example, for elliptic-curve DH (ECDH), an alternative to
DH, an implementation must verify that the public key exchange is a valid point on the
expected curve for most elliptic curves. While failure to do this validation would not stall
the protocol or damage its quality of service, researchers have shown that omitting this
validation step in the code would lead to various attacks [346].

Finding vulnerabilities due to misusing the design may seem harder for proprietary
microarchitectures relevant to our work. However, as we will discuss, we have seen
that some hardware extensions, such as Transactional Synchronization Extensions (TSX)
have allowed us to misuse this feature as an amplifier for several microarchitectural
attacks [91, 188, 224, 300]. Note that legitimate use cases of TSX and its adoption have
been minimal.

Invalid assumptions. Another significant source of vulnerabilities is due to invalid
assumptions when transforming abstraction to concrete design and implementation.
Therefore, it is vital to understand the execution environments and the attacker’s capability
before engineering a secure system. This understanding, at a high level, referred to as
threat modeling, is vital at every step of making a secure system from the abstract
design to low-level implementation. However, we have repeatedly seen that even with
proper threat modeling at the abstraction level, the concrete design and implementation
suffer from invalid assumptions. These invalid assumptions may have been simply due to
oversights, but it worth noting the influence of optimization and cost reductions as an
entangled reason.

To provide a few concrete examples, we start with the notion of avoiding security
through obscurity. This notion suggests not relying on source code obfuscation or hiding

– 10 –

CHAPTER 1. INTRODUCTION

design documents or engineering artifacts as security countermeasures. For example,
developers may skip the security review for software, assuming that an attacker can not
find vulnerabilities if they do not see the source code. While skipping the security review
may prioritize engineering resources, numerous software vulnerabilities on closed-source
products prove that this assumption is plain wrong and just an ineffective deterrence for
vulnerability hunters and adversaries [294].

Experts have also proposed several cost-effective mitigations for such software vul-
nerabilities. Some of these cost-effective methods similarly make compromises and weak
assumptions rather than resolving software errors’ root cause. One example is relying
on software diversification methods [108]. We can even argue that runtime diversifica-
tion techniques are a form of obscurity. Address Space Layout Randomization (ASLR)
assumes an adversary can not find the layout of memory pages at runtime; therefore,
the exploitation of software defects such as buffer overflows will be hard. However, this
difficulty is barely understood; attackers can bypass ASLR by leaking this memory layout,
invaliding these assumptions [103, 307].

Additional to making invalid assumptions about the attacker’s capability, i.e., weak
threat modeling, the complexity of building a system results in invalid assumptions about
the execution environment. For instance, the security community suggests developers not
to invent their cryptographic software. While this suggestion encourages a better security
practice for many use cases, it also pursues the developers into blindly using existing and
open source cryptographic software in the wrong context. For example, OpenSSL is a
popular cryptographic library [264]. However, OpenSSL developers have not designed
it to execute securely for all execution environments and when physical adversaries are
concerned.

In the past, we have seen that developers have introduced vulnerabilities by using
existing software or components of a system designed for a different threat model in a
different environment and threat model. Such a case appeared when OpenWRT routers
used Linux’s /dev/urandom as a source of entropy for cryptographic operations [137].
The Linux random number generator tends not to have enough entropy when executed
on this embedded system. Researchers have demonstrated that cryptographic protocols
inside this router device are vulnerable as manufacturers have made invalid assumptions
about the execution environment for this random number generator, ignoring this use
case’s particularity.

We will see that invalid assumption, originating from a lack of knowledge and under-
standing in this space, play roles in some of the microarchitectural vulnerabilities discussed
in this dissertation. In particular, rolling out a TEE like SGX based on an ISA not designed
initially with a system-level adversarial mindset exemplifies this notion within the hardware
computing industry.

– 11 –

CHAPTER 1. INTRODUCTION

Programming vulnerabilities. Engineers tend to optimize their software or hardware
logic to perform the best on legitimate inputs. Unfortunately, adversaries do not play with
the same rule when it comes to user inputs, and improper handling of unexpected user
inputs have caused the creation of several classes of software vulnerabilities, including
cross-site scripting [362], code injections [141], and buffer overflows [79]. Handling
unexpected inputs is extremely difficult for general-purpose computation such as protocol
and file format handlers or scripting environments since the input space is diverse.

Furthermore, the extensive popularity of unsafe programming languages like C and
C++ for efficient software has amplified human errors in the form of memory corruption
issues like buffer overflow. These programming languages offer high performance for
the core application and system software, but they also provide too much flexibility and
freedom to developers for introducing input-handling errors. Across the board, these
vulnerabilities have affected several of the threat models discussed earlier, giving power to
network [79], local [295], and system adversaries [350]. For instance, the HeartBleed [94]
vulnerability, due to improper bounds checking, allows attackers to steal the private session
key from the TLS handshakes remotely. Researchers have proposed several solutions
to automate the discovery of these vulnerabilities based on techniques such as input
fuzzing [121] and static analysis [73]. Although finding and patching these vulnerabilities
and mitigating them with system and compiler-level protections are promising [1], the
ultimate pathways to deal with these well-understood security issues are switching to safe
programming languages [204] or providing verified and isolated compartments [254].

It is crucial to understand that these solutions for eliminating programming flaws at the
architectural level rely on the solidity of the processor’s architecture and microarchitectural
security. As less understood problems, microarchitectural vulnerabilities can violate security
guarantees provided by isolation techniques and programming environments. Efficient and
reliable mitigation requires considering microarchitectural flaws as part of the defense in
depth. Understanding microarchitectural security is complimentary to building a more
robust defense for architectural vulnerabilities.

Side-Channel cryptanalysis and attacks. In 1996, Paul Kocher published a paper
about using the timing behavior of operations to attack cryptographic schemes [209].
Although this paper has initiated the past couple of decades of research into side-channel
attacks, some people and agencies knew about similar cryptanalysis techniques for a
long time. It is not clear when researchers coined the term side channel. Nevertheless,
the historical memo from David G. Boak, an educator at the National Security Agency
(NSA), implies that defense agencies used similar ideas for eavesdropping and breaking
cryptographic machines as early as the World War II :

– 12 –

CHAPTER 1. INTRODUCTION

Across the street, perhaps a hundred feet away, was a hospital controlled by the
Japanese government. He sauntered past a kind of carport jutting out from one side
of the building and, up under the eaves, noticed a peculiar thing-a carefully concealed
dipole antenna, horizontally polarized, with wires leading through the solid cinderblock
wall to which the carport abutted. He moseyed back to his headquarters, then quickly
notified the counter-intelligence people and fired off a report of this find to Army
Security Agency, who, in turn, notified NSA. [41]

Most side-channel attacks, as we know them today, exploit the physical behavior of
computing systems. During the execution of a computer algorithm, physical signals such as
power consumption [228], electromagnetic emanation [12], or merely timing behavior [54]
may expose partial information about processed secrets by the algorithm. Side-channel
cryptanalysis refers to this usage of partial information recovered through the side channel
and combining it with mathematical and algorithmic techniques to break cryptographic
schemes. Though, side-channels attacks go beyond cryptanalysis; they are practical for
recovering critical information from other components and applications [136, 183, 273].

Intuitively, side channels may not always be due to physical behavior. As for modern
digital systems, we expect the communication channels to be through well-defined input
and output; hence physical behavior such as power consumption is not part of the execution
model and is considered a side channel. Van Eck phreaking [355], a technique based on
electromagnetic emissions, demonstrates secret recovery in the context of analog TVs a
long time ago. Although the idea of using electromagnetic emissions as a side channel in
the recent attacks on smart cards is somewhat similar [195], it is not trivial to define what
is considered usual channels and side channels for an analog system. With this analysis in
mind, we also see modern examples of attacks that may be attributed as side channels or
not, depending on very subtle differences. For example, the Lucky Thirteen exploits the
timing behavior due to CBC-mode AES’s decryption failures when a ciphertext includes
invalid padding [106]. Although this particular attack relies on a timing side channel, some
protocols and applications may simply report decryption failures to the users. A malicious
user can use the failure report as an oracle to perform similar cryptanalysis attacks as the
Lucky Thirteen. Consequently, in this case, depending on how we define the expected
communication channels for this cryptosystem, we may call it a side channel. We refer to
information leakage through the microarchitectural element’s observable timing behavior
as side channels in our work.

Side-channel attacks contradict other examples of vulnerabilities mentioned earlier. In
those examples, defenders assumed that the computing hardware behaves as expected, and
attackers only use defined and expected digital communication channels. This perception
is not valid anymore when it comes to side-channel attacks. However, when we try

– 13 –

CHAPTER 1. INTRODUCTION

to defend computing systems against these side channels, similar principle problems
exist. We may see side-channels leakage due to invalid assumptions, misusing designs, or
improper programming and implementation of side-channel countermeasures. As a result,
side-channel attacks have created an extra burden by further complicating threat models
and engineering side effects. In this context, developers who were previously required to
take care of proper threat modeling and engineering at the architecture level now need
to know the environmental effects and how the hardware and software layers underneath
behave.

1.2 Microarchitectural Security

Microarchitectural attacks. The first side-channel attacks that exploit CPU’s cache’s
timing behavior were proposed more than a decade ago [32, 267, 269]. However, microar-
chitectural security and software-based side-channel attacks have more recently become a
trending avenue of research. Microarchitectural attacks have evolved over the past decade
from attacks on weak cryptographic implementations [32] to devastating attacks breaking
through layers of defenses provided by the hardware and the Operating System (OS) [348].
These attacks can steal secrets such as cryptographic keys [31, 270] or keystrokes [222].
More advanced attacks can entirely subvert the OS memory isolation to read the memory
content from more privileged security domains [224], and to bypass defense mechanisms
such as Kernel Address Space Layout Randomization (KASLR) [103, 126]. Rowham-
mer attacks can further break the data and code integrity by tampering with memory
contents [202, 304]. While most of these attacks require local access and native code
execution, various efforts have been successful in conducting them remotely [331] or from
within a remotely accessible execution environment like JavaScript [265].

One crucial difference between microarchitectural attacks and previous hardware
vulnerabilities [194], and traditional physical side-channel and fault attacks [37, 229] is
the ability for adversaries to exploit them from the software. As a result, vulnerabilities
stem from software-based side channels, and microarchitectural attacks affect a wide
range of threat models and products. For instance, network adversaries can exploit
these vulnerabilities through drive-by web-based attacks to steal cryptographic keys [117].
Local adversaries can exploit these vulnerabilities to break process-level and VM-level
isolation [184, 224, 300]. Worst, in the trusted computing model, attackers can tweak
these attacks for more efficient and effective data exfiltration, violating privacy and security
promises of TEEs [249, 348, 349].

In response to recent discoveries in this domain, researchers have also proactively
proposed countermeasures and mitigation. These countermeasures cover a diversity of

– 14 –

CHAPTER 1. INTRODUCTION

techniques and research paradigms. Cryptographers have proposed design and implemen-
tation choices that avoid secret-dependent memory accesses [34] or hide these access
patterns by following constant-time techniques [197]. Researchers have also proposed
several automated compiler-based mitigations for some of these attacks [277, 363]. Several
proposals work at the system-level in which the operating system is responsible for mitigat-
ing these attacks through specific memory management policies and techniques [48, 379].
Some other proposals suggest runtime attack detection by using CPU’s performance
counters [253]. Ultimately, the microarchitecture community has proposed fundamental
changes to eradicate some of these attacks applicable to future processors [87, 198].

Challenges. These attacks and countermeasures introduce sophisticated engineering
challenges that the industry has barely seen to adopt. In fact, microarchitectural security
is in its fancy. As researchers and engineers, we do not have a proper understanding of
how and if we should mitigate various attack vectors in this domain. We have identified
three main problems that contribute to this lack of understanding:

1. Earliness: Previous defensive efforts focus on a single attack vector e.g., cache
attack. However, we do not have full coverage of all the possible attack techniques.
Even on a ubiquitous microarchitecture like the Intel Core generations of CPUs,
other researchers before us and we have found new attack vectors every year in
the past decade. For microarchitectures that are evolving rapidly, understanding
potential attack vectors will be even more difficult. This difficulty is beyond existing
classes of vulnerabilities like buffer overflows and cross-site scripting on the web
that are generally well understood.

2. Fuzzy impact: Unlike software vulnerabilities, cryptographic flaws, or physical
attacks, understanding the impact of microarchitectural vulnerabilities depends
on several external factors. A subtle microarchitectural vulnerability may have no
impact or severe impact, depending on the software environment and execution
context. For example, Flush+Reload [384] is a cache attack technique that requires
access to shared read-only memory pages. We have seen researchers using this
technique to attack cryptographic implementations. Still, we do not know how
common it is for products at both enterprise and standard level to use shared
memory pages across security domains. While this complexity may suggest that
Flush+Reload has no practical impact, we saw later that Flush+Reload amplifies
other microarchitectural vulnerabilities like Spectre [207] and Meltdown [224] and
software vulnerabilities in the Linux kernel [298]. This difficulty in understanding
the real impact is due to modern software’s complexity and the lack of research
into these vulnerabilities’ practical implications on software systems.

– 15 –

CHAPTER 1. INTRODUCTION

3. Limited expertise and tooling: Both of the above problems suggest that we
need to analyze microarchitectures for finding and understanding attack vectors
and studying and demonstrating the impact of these vulnerabilities on the software
ecosystem. Since both of these efforts are heavily labor-intensive, expertise and
tooling would be tremendously helpful. However, as a new research topic, microar-
chitectural security is only mastered by a few experts. There is also a lack of tooling
to aid people with less expertise to learn and practice microarchitectural security.

These problems collectively contribute to microarchitectural security being a less under-
stood field. As a result, proposed mitigation often addresses these attacks individually
or applies to a particular instance of these attacks. More importantly, since we do not
understand some attacks’ impacts, there is no clear direction for the industry on spending
both engineering and performance costs into defending against these sophisticated attacks.

The performance cost is indeed oversimplified for some of the academic defense pro-
posals. Fixing microarchitectural vulnerabilities is unlike mitigating software vulnerabilities
with a limited scope, and it results in changing several performance metrics. For example,
Spectre’s real impact on different products is still an open research problem. Despite
this unresolved understanding of the real impact, proposed hardware mitigations would
drastically kill the entire software stack’s performance, not only a single software or
protocol [65]. In the big picture, the real question is if it is worth paying such tremendous
performance overhead to mitigate all of them. In this context, ad-hoc approaches to solve
these problems lack enough vision and practicality. The real question is what are we even
trying to defend against when we do not understand the hardware’s underlying complexity,
attack vectors, and their impact on weakening security boundaries?

Proposal. In this work, we aim to tackle some of the above problems in three directions:
(I) We study memory subsystems’ behavior on the commodity Intel Core CPUs from a
security perspective through black-box reverse engineering and microbenchmarks. This
step enables us to develop insights and tools for microarchitectural-security analysis
and find new attack vectors. These attack vectors will help us and the community to
have a better understanding of the vulnerability landscape. (II) We design and develop
tools to automate discovery and analysis of some of the vulnerabilities. We hope that
with automated analysis, we can better understand the root cause and impact of such
vulnerabilities. (III) For every new attack vector that we discover, we demonstrate
attacks on several cryptographic implementations known to be resistant against previous
attacks. To achieve end-to-end demonstration, we apply state-of-the-art mathematical
cryptanalysis techniques and devise new algorithmic methods.

– 16 –

CHAPTER 1. INTRODUCTION

We follow this three-pronged paradigm in the context of several threat models, including
network adversaries, local adversaries, and system adversaries. In summary, we propose
these techniques under the umbrella of microarchitectural cryptanalysis. We hope that
our work will become a standard procedure for the security testing of computing systems
processing highly-sensitive assets.

1.3 Contributions

We started looking into microarchitectural side channels within the context of TEEs
as part of my master thesis’s project [243]. This thesis resulted in CacheZoom [245],
a high-resolution cache attack against SGX, in collaboration with Gorka Irazoqui and
Thomas Eisenbarth. CacheZoom highlights that attack vectors like the cache side channel
have a higher impact on TEEs, and attackers can perform cryptanalysis of software-based
encryption schemes like AES more efficiently. Motivated by this earlier work, during
my Ph.D. work, we continued working in this domain by finding new attack vectors
affecting various threat models, improving the state-of-the-art tools and techniques, and
demonstrating end-to-end cryptanalysis attacks against several cryptographic software.
These findings were presented in close engagement with industry partners and other
academics through coordinated responsible disclosure, research talks and publications,
and joint projects, essentially increasing awareness and improving the affected products’
security. We provide an overview of this dissertation’s main contributions in Section 1.3.1.
We have also contributed to several other publications during my Ph.D. Although we have
not included them in this dissertation, for completeness, an overview of these additional
contributions is provided in Section 1.3.2.

1.3.1 Main Contributions

MemJam. The effect of potential intra-cache-line microarchitectural behaviors like
false dependencies was not considered a practical security threat on recent microarchi-
tectures [385]. Consequently, developers have deployed several ad-hoc countermeasures,
dubbed constant-time techniques, to avoid secret-dependent cache access patterns during
the execution of operations such as encryption or signature generation. In MemJam [244],
in collaboration with Thomas Eisenbarth and Berk Sunar, we precisely analyzed the 4K
aliasing false dependency across sibling CPU threads. Our analysis results in a new
intra-cache-line side-channel attack bypassing proposed ad-hoc countermeasures for cache
attacks. In contrast to cache bank conflicts, MemJam affected all Intel Core generations
known at the time of this study. Consequently, we demonstrated several cryptanalysis
attacks against implementations of AES and SM4 that were presumed to be secure. We

– 17 –

CHAPTER 1. INTRODUCTION

later extended this analysis to 3DES in collaboration with Jan Wichelmann, essentially
showing that all software-based encryption schemes inside Intel IPP cryptographic library
were vulnerable to MemJam [246].

Spoiler. Based on our understanding of MemJam, in Spoiler [187], in collaboration
with Saad Islaam, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu, Thomas Eisenbarth, and
Berk Sunar, we further analyzed the CPU’s memory subsystem and addressed an undocu-
mented false dependency behavior. This time, we showed that the memory subsystem
exposes critical timing behaviors depending on physical address bits. Consequently, we
managed to leak more information at runtime about the physical layout of memory pages.
We leveraged this information to boost previous microarchitectural attacks like the cache
Prime+Probe and rowhammer. Our work shows the importance of precise analysis and
reverse engineering of commodity microarchitectures. This original analysis indicates that
core-private leakages contribute to more powerful attack vectors on off-core components
such as the shared last-level cache and DRAM.

Transynther and Medusa. Based on the revealed knowledge about how the memory
subsystem works on superscalar CPUs, we have contributed to several new transient
execution attacks based on Meltdown as part of collaborations with other researchers
(§1.3.2). However, the analysis and discovery of Meltdown-style vulnerabilities is a
stochastic and error-prune problem. We designed a tool, named Transynther [247]
based on fuzzing techniques, that automatically synthesize and analyze code snippets
for microarchitectural data sampling (MDS). This tool aims to help find new variants
of MDS, synthesize code snippets for attack demonstration, and ultimately help with
automated testing of future microarchitectures. Using Transynther, we provide new
insight into Meltdown attacks’ root cause and disclose new exploitation methodologies.
In particular, the Medusa attack exploits implicit write-combining memory operations,
e.g., rep mov. To show the impact of Medusa on real-world software, we combine the
data leakage from Medusa with state-of-the-art Coppersmith’s technique. As a result,
we demonstrate an end-to-end attack on an RSA implementation known to be secure
against all previous side-channel and microarchitecture attacks.

We have published the open-source Transynther tool, Medusa technique, and the
RSA attack demonstration at the Usenix security conference proceedings, in collaboration
with Moritz Lipp, Berk Sunar, and Michael Schwarz. Later, we also tested Transynther
on more recent Intel CPUs, claiming to be secure against MDS attacks. Our tool
discovered that 10th generation Intel CPUs does not adequately mitigate one of the MDS
variants, which confirms our tool’s usefulness and how automated testing is crucial for
microarchitectural security analysis.

– 18 –

CHAPTER 1. INTRODUCTION

CopyCat. While most of our findings affect multiple threat models, including local
adversaries and system adversaries attacking SGX, based on our prior work [244, 245, 300],
we have learned that microarchitectural attacks have a more severe impact on the system
adversarial model. More importantly, adversaries can develop new, unusual attacks like
the state-of-the-art controlled-channel to target the SGX threat model [380]. Controlled-
channel attacks exploit the ISA’s architectural features to exfiltrate memory-access patterns
and runtime control flow in a deterministic fashion, i.e., without measurement noise.

In CopyCat [249], in collaboration with Jo Van Bulck, Nadia Heninger, Frank
Piessens, and Berk Sunar, we devise a new attack based on the SGX-Step [380] framework
that improves the spatial resolution of controlled channel attacks from 4 kB granularity
to instruction-level granularity. CopyCat is a novel controlled-channel attack that
leak runtime control flow from Intel SGX enclaves without noise at an instruction-level
granularity. We explore the impact of CopyCat on general-purpose use cases by defeating
a state-of-the-art compiler hardening technique against branch shadowing attacks. The
technique demonstrated by CopyCat bypasses several previous countermeasures that
assume adversaries can only perform controlled-channel attacks with page-level resolution.
This attack differs from previous attacks using cache and branch predictor’s leakage,
which can only probe locally, and they suffer from noise. CopyCat opens a new avenue
of single-trace attacks on runtime control flow that can not be mitigated by page-level
obfuscation or tweaking and isolation of microarchitectural buffers and components.

In an extensive empirical case study of side-channel vulnerabilities in widely-used
cryptographic libraries including WolfSSL, Libgcrypt, OpenSSL, and Intel IPP, we verify
the practicality and capability of these attacks, demonstrate several attacks, and report
vulnerabilities in some of these libraries. We devise new algorithmic techniques to exploit
these vulnerabilities in DSA, ECDSA, and ElGamal and RSA key generation, which result
in complete key recovery in the context of Intel SGX.

TPM-Fail. Although physical isolation of trusted elements promises strong guarantees
compared to TEEs, in TPM-Fail [248], we show that they are not immune to side-channel
and timing attacks. We perform a black-box timing analysis of TPM devices using
microarchitectural timing analysis. Our analysis reveals that elliptic curve signature
operations on TPMs from various manufacturers are vulnerable to timing leakage, leading
to the private signing key’s recovery. We show that this leakage is significant enough to
be exploited remotely by a network adversary.

TPM-Fail, in collaboration with Thomas Eisenbarth, Berk Sunar, and Nadia Heninger,
suggests an analysis tool that can accurately measure TPM operations’ execution time on
commodity computers. As a result, we discover previously unknown vulnerabilities in TPM
implementations of ECDSA and ECSchnorr signature schemes and the pairing-friendly

– 19 –

CHAPTER 1. INTRODUCTION

BN-256 curve used by the ECDAA signature scheme. We apply lattice-based techniques
to recover private keys from these side-channel vulnerabilities. We also demonstrate a
remote attack that breaks the authentication of a VPN server that uses Intel fTPM to
store the private certificate key and sign the authentication message. We demonstrate
our attack’s efficacy against the strongSwan IPsec-based VPN Solution that uses the
TPM device to sign authentication messages. Our study shows that these vulnerabilities
exist in devices validated based on FIPS 140-2 Level 2 and Common Criteria (CC) EAL
4+, the highest internationally accepted assurance level in CC, in a protection profile that
explicitly includes timing side channels.

1.3.2 Other Contributions

Cryptographic implementations. In CacheQuote [82], we apply the cache side chan-
nel of CacheZoom to analyze the security of Intel’s EPID Protocol, as implemented inside
SGX’s quoting enclave. We show that we can recover the SGX enclave’s long term key
partially due to how Intel’s implementation of the EPID protocol leaks the length of the
randomness used for one of the zero-knowledge proofs of EPID. To exploit this leakage,
we extend the hidden number problems (HNP) to this zero-knowledge protocol. This
exploitation allows a malicious attestation server operator to break the unlinkability guar-
antees of SGX’s remote attestation protocol. In addition to this practical demonstration,
we also show experimental evidence that the lattice attack can still succeed even when
we observe a small number of erroneous traces. CacheQuote essentially shows that even
known attack vectors like CacheZoom are hard to prevent for sophisticated software. The
vendor who was aware of this attack vector still deployed the EPID cryptographic library
without considering such subtle leakage of secrets.

Since detecting vulnerability of cryptographic implementations to microarchitectural
side channels and locating the vulnerable part of the code is challenging, in MicroWalk [368],
in collaboration with Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar, we propose
a leakage detection technique and develop a framework to locate leakages within software
binaries. MicroWalk is extendable to locate other and new types of microarchitectural
leakages. It is a technique based on dynamic binary instrumentation and mutual Information
analysis to find memory-based and control-flow based microarchitectural leakages in
software binaries. We demonstrate the ease-of-use of MicroWalk by showing how it
significantly eases binary analysis even when source code is not accessible to the analyst.
We apply MicroWalk to cryptographic schemes implemented in Microsoft CNG and Intel
IPP, both widely used yet closed source crypto libraries. Our results include previously
unknown leakages in these libraries, quantification of the critical leakages, and discussing
the security impact of these leakages on the relevant cryptographic schemes. MicroWalk is

– 20 –

CHAPTER 1. INTRODUCTION

an automated approach that would help engineers to avoid vulnerabilities in cryptographic
implementations such as those demonstrated in MemJam, TPM-Fail, CacheZoom,
and CacheQuote.

Transient execution attacks. We started looking into applying the Meltdown tech-
nique to other microarchitectural elements based on how our understanding of Intel CPUs
handle data dependencies studied in MemJam and Spoiler. In Fallout [61], we show
that data leakage is still possible even on newer Intel hardware, which skips software-based
countermeasures like the kernel page table isolation. At the microarchitectural level, in
this work, we focus on the store buffer. This microarchitectural element serializes the
stream of stores and hides the latency of storing values to memory. In summary, Fallout
contributes a new security flaw due to specific shortcuts in Intel CPUs that allow us to
leak the data corresponding to recent memory stores. We demonstrate these behaviors’
security implications by recovering the values of recent stores performed by the OS kernel,
leaking cryptographic keys, and breaking the KASLR mitigating mechanism.

In ZombieLoad [300], we further analyze other root causes for the exploitation of
Meltdown and focus on another microarchitectural element, called the line fill buffer
(LFB). In contrast to Fallout, ZombieLoad leaks data from sibling CPU threads as Intel
CPUs share the LFB among multiple threads running on the same CPU core. We combine
random data sampling in the time domain with traditional side-channel primitives to
construct a targeted information flow similar to regular Meltdown attacks. We demonstrate
ZombieLoad in several real-world scenarios: cross-process, cross-VM, user-to-kernel, and
SGX. We show that ZombieLoad breaks the security guarantees of Intel SGX, even on
Foreshadow-resistant hardware.

ZombieLoad and Fallout work on Meltdown-resistant hardware. These vulnerabilities
under the umbrella of microarchitectural data sampling were found and analyzed in
collaboration with researchers from Graz University of Technology, Katholieke Universiteit
Leuven, University of Michigan, and the University of Adelaide. Other industry researchers
and academics from Vrije Universiteit Amsterdam and CISPA Helmholtz Center for
Information Security discovered similar behaviors.

In another contribution, Load Value Injection (LVI) [349] shows that Meltdown-type
data leakage can be inverted into a Spectre-like Load Value Injection (LVI) primitive. LVI
transiently hijacks data flow, and thus control flow and presents an extensible taxonomy
of LVI-based attacks. We show the insufficiency of silicon changes in the latest generation
of acclaimed Meltdown-resistant Intel CPUs. As a result, we develop practical proof-of-
concept exploits against Intel SGX enclaves, and we discuss implications for traditional
kernel and process isolation in the presence of suitable LVI gadgets and faulting or assisted
loads. Our evaluation of compiler mitigations for LVI suggests that native and wholesome

– 21 –

CHAPTER 1. INTRODUCTION

mitigation incurs a runtime overhead of factor 2 to 19. LVI creates a new avenue of
research into compiler-based optimization and defense for legacy SGX hardware that will
not benefit future hardware designs.

Future explorations. Microarchitectures are becoming more heterogeneous, integrat-
ing accelerators such as GPUs, FPGAs, and AI accelerators. Consequently, we expect to
see more microarchitectural attacks. As a pioneer in this direction, in JackHammer [367]
in collaboration with Zane Weisseman, Thore Tiemann, Evan Custodio, Thomas Eisen-
barth, and Berk Sunar, we demonstrate novel attacks between the memory interface of
Intel Arria 10 GX platforms and their host CPUs. In summary, we thoroughly reverse-
engineer and analyze the cache behavior and investigate the viability of cache attacks
on realistic FPGA-CPU hybrid systems. Based on our study of the cache subsystem, we
build JackHammer, a Rowhammer from the FPGA, that bypasses caching to hammer
the main memory. We compare JackHammer with the CPU Rowhammer and show that
JackHammer is twice as fast as a CPU attack, causing faults that the CPU Rowhammer
cannot replicate. JackHammer remains stealthy to CPU monitors since it bypasses the
CPU microarchitecture. Using both JackHammer and conventional CPU Rowhammer,
we demonstrate a fault attack on recent RSA implementation versions in the WolfSSL
library and recover private keys. JackHammer shows how combining independent mi-
croarchitectures into the same memory subsystem introduces new security and privacy
challenges.

Another avenue of future explorations is the use of deep learning and artificial intelli-
gence in this domain. In collaboration with Berk Gulmezoglu, Thomas Eisenbarth, and
Berk Sunar, we propose FortuneTeller [135] which is the first generic detection model
for microarchitectural attacks. FortuneTeller learns the system’s behavior by observing
microarchitectural events and classifying outliers not conforming to the trained model.
FortuneTeller detects unseen microarchitectural attacks since it only requires training over
benign execution patterns. In summary, this is a generic detection technique that can
be applied to detect attacks on other microarchitectures and execution environments
can automatically detect various attacks, disregarding the victim application, including
cryptographic implementations, browser passwords, private data in the kernel environment,
bit flips, and so on. FortuneTeller combines hardware performance counters with ad-
vanced Recurrent neural network algorithms by training a more refined and generic model.
We show how this combination performs better by comparing it to the state-of-the-art
microarchitectural detection techniques.

– 22 –

CHAPTER 1. INTRODUCTION

1.4 Outline of the Work

Chapter 2 focuses on microarchitectural side-channel attack vectors. We extensively discuss
our contributions to microarchitectural side channels stemming from memory dependency
analysis. In Chapter 3, we particularity focus on transient execution attacks that leak data
from the CPU by discussing prior work, Transynther, and the Medusa. Chapter 4
provides a taxonomy of attacks in the system-adversarial model against SGX and ultimately
cover the CopyCat contribution. In Chapter 5, we will focus on another hardware-based
trusted computing technique and discuss our findings in TPM-Fail. Chapter 6 puts
together what we have learned about side-channel and data leakage. We combine these
attack vectors with cryptanalysis techniques under the framework of microarchitectural
cryptanalysis. We report several end-to-end microarchitectural cryptanalysis attacks.
Ultimately, in Chapter 7, we put all of our findings and previous work on attack and
defense into the big picture and provide conclusions and recommendations in this domain.

– 23 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Chapter 2

Uncovering Microarchitectural Side
Channels

Resource contention within the microarchitecture may occur when independent programs
share the same microarchitectural components. Modern central processing units (CPUs)
are optimized to avoid such contentions as much as possible during the execution of regular
workloads. However, an adversary can trigger such resource contentions intentionally with
a specially crafted program.

This chapter first provides some background information about the CPU microarchi-
tecture (§2.1). Next, we provide an overview of the proposed works in the literature
that highlights several security issues due to such intentional resource contentions (§2.2).
In Section 2.3, we perform an in-depth analysis of false dependencies between memory
operations issued by separate CPU threads. As a result, we propose an attack named
MemJam that exploits false dependencies due to partial address aliasing to construct a
novel side channel with high spatial resolution. MemJam highlights the importance of
scrutinizing the microarchitecture’s security analysis while bypassing several countermea-
sures against cache attacks. In Section 2.4, we advance this analysis further by discovering
and exploiting a new microarchitectural behavior related to addressing logics. This time,
our proposed attack, named Spoiler, shows how physical-address leakage within the
CPU core has security implications for shared caches and DRAM. Finally, Section 2.5
summarizes our findings.

2.1 CPU Microarchitecture

Modern CPUs connect multiple cores to a shared last-level cache (LLC) and the main
memory, i.e., DRAM via a coherent memory subsystem. Each core can execute at least

– 24 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Front End Execution Engine Memory Subsystem

Memory Order Buffer

Execution
Units

Reservation
Station

CPU Integer
Registers

(180)

Port 4
Port 5

Port 3

Port 2

Port 1

Port 0

Lo
ad

AG
U

Lo
ad

AG
U

St
or

e

Store Buffer
(56 Entries) Load Buffer

(72 Entries)
L2 Cache
(256 KiB;

4-way)

L1 Data Cache (32 KiB; 8-way)

FPU Vector
Registers

(168)

Port 7

Port 6
Line Fill
Buffer

(10 Entries)

DRAM

ReOrder
Buffer
(224

Entries)

μop

μop

μop

μop

μop

μop

μop

μop

Data TLB

Unified TLB

Al
loc

at
ion

 Q
ue

ue
μop

μop

μop

μop

μop

μop

μop

μop

Fe
tc

h
De

co
de

Branch
Predictor

CPU CoreCPU CoreCPU CoreCPU CoreCPU CoreCPU CoreCPU CoreCPU Core

Shared Last Level Cache

Figure 2.1: Schematic of a superscalar CPU. Multiple cores are connected to the
DRAM and a shared LLC via an interconnect. The front end of the core fetches and
decodes instructions into µOPs. The execution engine assigns ROB entries for each µOPs,
allocating resources to execute µOPs. Although the execution of µOPs is out-of-order, the
ROB is responsible for in-order completion and retiring instructions. Memory operations
will load and store data from and to the next levels of cache and, ultimately, the DRAM
through the memory subsystem and several internal data and address buffers. This
subsystem includes store buffer, load buffer, line fill buffer, and translation lookaside buffer
(TLB).

a single software thread or multiple threads if it supports simultaneous multithreading
(Section 2.1.3). Figure 2.1 illustrates the internal of a CPU core and its placement
concerning the LLC and DRAM. Each core executes programs through a multi-stage
pipeline, e.g., 14-19 stages on Intel Skylake, and synchronizes operations by adopting
out-of-order and speculative execution techniques. These pipeline stages are virtually
scattered within the front end, the execution engine and the memory subsystem. The
front end fetches and decodes program instructions, and the execution engine allocates
resources and executes these instructions in collaboration with the memory subsystem.
Next, we discuss several components of the CPU core, the memory subsystem, and related
optimization techniques.

2.1.1 Out-of-order and Speculative Execution

Fetch and decode. The front end fetches program instructions from the instruction
cache and places them into the allocation queue. In a complex instruction set computer

– 25 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

(CISC) such as Intel, each instruction is first decoded to smaller micro-operations (µOPs)
using a complex decoder or a microcode sequencer [63]. Decoded µOPs may also
be wang2017cached in a µOP cache to speed up the decoding of frequently executed
instructions. For simplicity, Figure 2.1 omits some of these details.

The core fetches a long sequence of instructions ahead of time, but it also brings
instructions that are not sequentially available in the program with the branch predictor’s
help. The branch predictor maintains the history of the previous branch instructions’
execution and predicts based on their record. Generally, the branch predictor, based
on some proprietary design, chooses a target address for an indirect branch, e.g., jmp
<register>, and it also predicts the binary decision of conditional branches, e.g., jCC
[target]. As a result, branch predictor helps the core not stall on latent control flows
that are not entirely executed (retired) by facilitating speculative fetching and execution
of instructions.

Execution engine. In addition to fetching instructions ahead of time, to benefit from
a deep out-of-order pipeline, the core optimizes its resources by synchronously allocating
resources and executing multiple instructions at a time. The execution engine retrieves
the µOPs from the allocation queue, then allocates resources while the instructions are
waiting in the reorder buffer (ROB) to be completed. In parallel, the scheduler sends the
µOPs to various execution units depending on the availability of resources. The CPU core
executes these µOPs out-of-order, and some may succeed before preceding instructions.

While the correct execution of instructions may depend on those prior instructions,
the CPU transiently executes such instructions if they meet all dependencies. The ROB
will retire completed µOPs without failures according to the correct ordering instructions
inside a program. Generally, the core only verifies the architectural consistency right
before committing the architectural registers and memory results. If the ROB detects an
error for an operation, it will discard the wrong outcome, i.e., the pipeline is flushed, and
corresponding µOPs will be rescheduled. Instructions that perform memory operations
access the memory through the memory subsystem.

Speculative execution. As mentioned, the pipeline can fetch instructions ahead of
time and also execute them out-of-order. During out-of-order execution, the core may
execute an instruction based on speculation about the outcome of preceding instructions.
For instance, during a load that executes before preceding stores, the core may predict a
dependency between the load and preceding stores and performs the load operation
based on this prediction. Later, if this prediction outcome turns out to be wrong, the
pipeline will flush and re-execute the load and its dependent instructions [146, 187].
Similarly, thanks to the branch predictor, branches are executed speculatively based on

– 26 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

predicting the target and direction of the branch [219]. Speculative execution can generally
refer to any operation that relies on a form of a prediction. While speculative execution
improves resource usage within the core and speeds up applications by avoiding unnecessary
stalls, it has been the cause of several microarchitectural vulnerabilities [187, 207, 211].

2.1.2 Memory Subsystem

DRAM memory is slow compared to the internal CPU components. Programs running on
the CPU tend to access the same data and instruction repeatedly. However, accessing
memory to get the same information takes too much time, which causes a bottleneck in
the system. Modern microarchitectures have multiple caches and buffers to fill the speed
gap between execution units and the DRAM and speed up accessing information. Before
discussing the components within the memory subsystem, it is essential to understand
virtual addresses and address translation.

Address translation. On a superscalar CPU, programs only use virtual addresses to
execute code and access data, while the memory operations are mapped to the DRAM
using physical addresses. The virtual memory manager of the OS shares the DRAM across
all running tasks by assigning isolated virtual address spaces to each task. Each task can
use its entire virtual address space without the meddling of memory accesses from others.
The system assigns memory regions in page granularity, which is generally 4 kB each.
Each virtual page will be stored as a physical page in DRAM through a virtual-to-physical
page mapping. CPUs generally support larger page sizes for specific use cases when a
program or a device driver requires access to contiguous physical memory space.

The CPU core translates the virtual addresses of code and data pages to physical
addresses with the operating system’s help. Figure 2.2 demonstrates the translation
process, including usage of a translation lookaside buffer (TLB) and page miss handler
(PMH). For the translation process, the OS maintains a hierarchy of page tables. The
lower 12 bits of a virtual address, corresponding to the offset within a 4 kB page, are
directly mapped to physical address space. The upper bits are subjected to the translation
using a page-table hierarchy that is maintained by the OS. Ultimately, the page-table
hierarchy translates the upper bits to a page table entry (PTE). The PTE of each page
consists of some metadata and the physical page number. Since translation using the
page-table hierarchy is time-consuming, a translation lookaside buffer (TLB) stores the
translations for recently-accessed pages. If a virtual address translation is not present in
the TLB, then the PMH triggers the OS to perform its page walk procedure to obtain
the physical address. As we will discuss, the virtual to physical address translations add
complexity to other memory subsystems with potential security concerns.

– 27 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Figure 2.2: To translate a virtual address, the CPU first consults the TLB. If the
translation (PTE) is not present in the TLB, the CPU interrupts the OS to perform a
page table walk.

Cache hierarchy. Intel CPUs have two levels of core-private cache (L1, L2) and the
shared last level cache (LLC). The closer the cache memory is to the CPU, the faster and
smaller it is than the next level cache. The LLC, shared across CPU cores, is connected
through an interconnect bus to the DRAM, peripherals, and other subsystems. Both the
LLC and L2 cache are unified caches, i.e., they hold both data and instruction cache lines.
The L1 cache is composed of separate units for storing data (L1D) and instructions (L1I);
the L1D is for data cache lines, and the L1I is for instruction cache lines.

The cache memory consists of multiple slices and sets. In a set-associative cache like
on Intel CPUs, each set stores a certain number of cache lines (ways). The size of a
cache line, 64 bytes, is the block size for all memory transactions across caches and the
DRAM. In general, Intel CPUs have 64 sets for the L1 cache, and the number of ways is
8. Therefore, the cache subsystem uses the six least significant bits of the virtual address
(same as physical) to determine the offset within a line—the remaining bits to pick the
set to store the cache line.

The number of physical address bits used for mapping is higher for the LLC since
it has many sets, e.g., 8192 sets. Hence, the untranslated part of the virtual address
bits, which is the page offset, cannot index the LLC sets. Instead, the indexing uses
higher physical address bits. Further, the cache subsystem divides LLC sets into multiple
slices, one slice for each CPU core. The mapping of the physical addresses to the slices
uses an undocumented function, which previously has been reverse-engineered for some
microarchitectures [183].

– 28 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Cache operations. When the CPU tries to access a cache line, a cache hit or miss
occurs respective of its existence in the relevant cache set. If a cache miss occurs, the
CPU brings the target memory line to all cache levels and the determined sets. Reloads
from the same address would be much faster when the memory line exists in the cache.
The cache serves accesses to the same memory address unless other memory accesses
evict that cache line. We can also use the clflush instruction, which follows the same
memory access check as other memory operations to evict our cache lines from the entire
cache hierarchy.

In a multicore system, the CPU also keeps cache consistent among all levels. On
most architectures, cache lines by default follow a write-back policy, i.e., if an instruction
overwrites the data in the L1 cache, it will propagate to all other cache levels. The LLC
is inclusive of L2 and L1 caches, which means that if an operation evicts a cache line
in LLC, the CPU expels the corresponding L1 and L2 cache lines [163]. These policies
help to avoid stale wang2017cached data where one CPU reads invalid data mutated by
another CPU. Set-associative caches also require to support a replacement policy that
determines the order to evict a cache line when the set becomes full. For example, a
standard replacement policy is the least recently used (LRU) policy. The detail for the
replacement policy is not relevant to our work.

Line fill buffer. The CPU uses a fill buffer to service memory accesses missing the
L1 cache. When an L1 cache miss occurs, the CPU will allocate an entry inside the fill
buffer to collect the data bytes from the next cache or the DRAM. Note that it may
forward data from the fill buffer to memory loads before filling the entire cache line. The
fill buffer can also temporarily service the data for memory accesses of uncachable (UC)
type. UC memory commonly used by device drivers for memory-mapped IO (MMIO)
is directly serviced from the main memory and will bypass the cache. We will discuss
different memory types and their setting shortly. In general, fill buffers assure that the
entire memory bytes corresponding to a memory instruction are available before forwarding
it to load operations. On some microarchitectures, the memory subsystem deallocates
’fill buffer’ by allowing other memory operations to use a freed entry. Consequently,
the old/stale data may stay in the buffer until another memory operation overwrites it.
Microarchitectural data sampling showed that Intel CPUs might forward stale data to
malicious load operations [300].

Memory types. CPUs support multiple per-page memory types with different policies
for caching and ordering guarantees. The software can set these memory types for every
physical page at page-level granularity. The supported memory types on x86 are write-back
(WB), write-through (WT), write-protect (WP), write-combining (WC), and uncachable

– 29 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

(UC). Most pages are write-back, which allows them to be wang2017cached and written
back to memory later. Both UC and WT write data directly to memory. In contrast,
WT also caches the data but writes it back to the memory synchronously. Uncachable
memory is never wang2017cached and directly written back to the memory. Uncachable
memory is required for memory-mapped devices to ensure that the data reaches an external
subsystem as soon as the CPU writes it to the DRAM and with the right byte ordering.
Writing-combining memory tries to reduce bus requests by combining multiple stores to
the same cache line.

A memory store has to update core-private caches, the LLC, and possibly the main
memory. Thus, for performance, it is beneficial to combine multiple stores into a single
request. This technique, known as write combining (WC), reduces the number of bus
requests and cross-core snoops that update the core-private copy of the cache. With WC,
the CPU temporally buffers the store operations’ data to the same cache line until all
the memory bytes that modify that cache line are available. Some CPUs, like in AMD
CPUs, implement WC with a dedicated buffer [10]. In Intel CPUs, WC allocates an entry
from the fill buffer [177]. Programs often use WC for memory operations in places where
memory ordering guarantees are weak, e.g., for frame buffers of graphic cards, which are
usually treated as write-only by programmers [171].

There are two different mechanisms to set the memory type for a page. The legacy
method is to use one of the memory type range registers (MTRRs). These registers
allow setting the memory type for a physical address range. The modern alternative is
to use page-attribute tables (PATs). With PATs, the operating system can define and
concurrently use a list of 8 memory types. Typically, this list contains all available memory
types plus the memory type UC-. UC- is the same as uncachable, with the only difference
that it is flexible to changes to a different kind using an MTRR range. Every page-table
entry contains three bits which select the corresponding entry from the PAT and apply a
memory type to that page [177].

Memory order buffer. Intel CPUs manage memory operations inside the memory
order buffer (MOB). While MOB is mostly a terminology from Intel, other superscalar
CPUs generally follow a similar technique, as explained below. MOB works closely with
the data cache to assure that memory operations are executed efficiently by following the
memory ordering rule [172]. This rule implies that the CPU must execute store operations
in-order and load operations out-of-order. The memory subsystem should enforce these
rules to improve memory access efficiency while guaranteeing their correct commitment
to cache and DRAM.

Figure 2.3 shows the MOB schematic according to Intel [2, 3]. The MOB includes
circular buffers, store buffer and load buffer (LB). Store buffer consists of store address

– 30 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

buffer (SAB) and store data buffer (SDB). We use store buffer to mention the logically
combined SAB and SDB units for simplicity. A store operation will be decoded into two
µOPs to store the address and data, respectively, to the store buffer. The store buffer
enables the CPU to continue executing other instructions before the commitment of
preceding store operations. As a result, the pipeline does not have to stall for these stores
to complete. This logic further enables the MOB to support out-of-order execution of the
load operations.

PA [:0]

VA [11:0]PA [19:12]VA [:12]...
VA [11:0]PA [19:12]VA [:12]...

VA [11:0]PA [19:12]VA [:12]...

...

...
PA [:0]...

PA [:0]...

DATA...
DATA...

DATA...

... ...

LB

SABSDB

MOB

DATAVA[:0]PA[:0]...
...

PAB

TLB

PMH

index 0

index n

index 0

index n

index 0

index k

Stored Data μOp Store Address μOp

DCACHE

Figure 2.3: The memory order buffer includes circular buffers SDB, SAB, and LB. SDB,
SAB, and PAB of the data cache have the same number of entries. SAB may initially hold
the virtual address and the partial physical address. MOB requests the TLB to translate
the virtual address and update the PAB with the translated physical address.

The CPU core incorporates several optimization techniques within the MOB such
as speculative loads [92], store forwarding and memory disambiguation to improve the
memory bottleneck. The CPU can generally execute memory load operations faster than
the store operations since stores may need to update multiple caches and the DRAM. A
memory load may bypass preceding stores to avoid pipeline stalls due to the potential
false dependency of load on stores. On the other hand, it may forward data from the
store buffer to the load when necessary. Either way, the load operation has to execute
speculatively.

Store forwarding. Store forwarding is an optimization technique that sends the data
from the store buffer to a memory load operation if the load address matches any of
the store buffer entries. This optimization is a speculative process since the MOB cannot
determine the actual dependency of the load on stores based on the store buffer. Intel’s

– 31 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

implementation of the store buffer is undocumented, but a potential design suggests that it
will only hold the virtual address, and it may include part of the physical address [2, 3, 212].
As a result, the CPU may falsely forward the data, although the physical addresses do
not match. The ROB delay the ultimate resolution until the load commitment since the
MOB needs to ask the TLB for the complete physical address information, which is a
time-consuming operation. Additionally, the L1D cache may hold the translated store
addresses in a physical address buffer (PAB) with an equal number of entries as the store
buffer. This enhances performance since the load does not have to wait for preceding
stores to complete. However, we can not confirm if PAB exists on the Intel products.
In general, the dependency prediction may rely on partial address information, leading to
false dependencies and stall hazards.

Memory false dependencies. Dependency prediction and resolution logic circuits
are in place to determine if a load is dependent on any of the preceding store buffer
entries. During store forwarding or load bypass, the CPU may fail to predict or resolve the
correct dependencies between the load and stores [187, 244]. False dependencies may
occur due to the unavailability of physical address information. The ROB has to address
these false dependencies to avoid corrupting data and computation. The occurrence
of false dependencies and their resolution depends on the actual implementation of the
memory subsystem. Intel also uses a proprietary technique for memory disambiguation
and dependency resolution logic in the CPUs to predict and resolve false dependencies at
an earlier pipeline stage.

L1 Cache Bottlenecks. The L1 cache port has a limited bandwidth, and simultaneous
accesses will block each other. Older CPU generations adopted multiple banks as a
workaround to this problem [107], in which each bank can operate independently and serve
one request at a time. While the multi-bank workaround partially solves the bandwidth
limit, it creates the cache-bank conflict phenomena where simultaneous access to the
same bank creates resource contention and delay. Intel has resolved the cache bank
conflict issue with the Haswell generation [163]. A potential solution is to use multi-port
banks to avoid bank conflicts.

Mentioned false dependencies are the source of another potential bottleneck for
accessing the same cache offset [107, 163]. Simultaneously load and store operations
with addresses, which are 4 kB away from each other, are problematic, and they halt
each other. The CPU cannot determine the dependency from the virtual address, and
addresses with the same last 12 bits have the chance to map to the same physical address.
Such simultaneous access can happen between two sibling threads within the same CPU
core or during the out-of-order execution. There is a chance that a memory store/read

– 32 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

might be dependent on a load/store with the same last 12 bits of the address. A
microarchitecture may not determine such dependencies on the fly; thus, they cause
latency.

Transactional memory. Hardware transactional memory (HTM) allows the atomic
execution of memory operations. Exceptions during an HTM transaction abort the entire
transaction and discard the outcome.

Intel Transactional Synchronization Extension (TSX) implements HTM by introducing
a new set of barrier instructions in which application developers can define a block of code
to be executed atomically by surrounding it with the xbegin and xend instructions. The
CPU only commits the results of a transaction if the entire block executes successfully.
Cache conflicts, hazards within the memory subsystem, and interrupts, which may affect
the atomicity operations, abort TSX transactions. Conflicting cache and memory accesses
may have been introduced by another sibling thread or by the same thread. Intel TSX
has been abused for both microarchitectural attack and defense [129, 188, 299, 302, 311].
Local adversaries can also benefit from the TSX extension to silently and efficiently
suppress architectural faults.

2.1.3 Multithreading

Simultaneous multithreading. Modern CPU designs promote resource sharing via
another optimization technique called simultaneous multithreading (SMT) [344]. Even
with all the previously mentioned optimizations, the program logic adheres to dependencies,
blocking the pipeline from using its full potential. SMT allows multiple threads to execute
on the same core simultaneously while sharing the same resources. As a result, if one
resource is busy by a thread, other threads can consume the remaining available resources.
SMT allows the CPU to use each physical CPU core as multiple virtual logical CPUs.
The software stack sees each logical CPU as a separate CPU, and each logical CPU can
execute a different OS thread simultaneously. According to memory protection semantics,
these threads are architecturally isolated from each other and only access their intended
data.

Intel Hyperthreading and AMD SMT support two concurrent threads per core or
logical CPUs. On Intel CPUs, these logical CPUs share some of the resources, e.g., store
buffer, in a compartmentalized fashion. It statically divides such a resource into two
separate sections upon activation of the second thread. Other resources, such as the fill
buffer, are time shared. While each competes for the same resources within the core, two
sibling threads can belong to independent security domains. For Intel, hyper-threading is a
critical optimization feature that can provide modern servers with up to 30% performance

– 33 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

gain with the same CPU die size. However, Intel Hyperthreading has suffered from various
microarchitectural side channels, since the CPU has to synchronously share resources such
as translation lookaside buffer (TLB) [123] and execution ports [15]. ZombieLoad [300]
and RIDL [356] showed data leakage due to the sharing of the fill buffer across sibling
CPU threads.

Scheduling & multitasking. The operating system manages another level of resource
sharing to maximize both DRAM and CPU usage further. The operating system can
periodically schedule different processes on different CPU cores (logical CPUs) [230, 291].
As a result, different processes share CPU resources, and each logical CPU executes
instructions from one task at a time and switches to another one. For core-private
resources, such asynchronous sharing of resources has less chance of creating contention
across separate security domains than SMT. Depending on the pipeline’s depth and timing
of difference operations, contention across separate security domains is still possible during
a context switch.

2.2 Microarchitectural Side Channels

More than a decade ago, several researchers introduced the first microarchitectural
side-channel attacks, known as cache attacks [32, 267, 269]. In Section 2.2.1, we
discuss cache attacks. Section 2.2.2 generalizes such contention-based side-channel
attacks by discussing information leakage due to other shared microarchitectural resources.
Section 2.2.4 discusses how rowhammer additionally compromises integrity of applications
and data. Finally, in Section 2.2.3, we go over some of the applications of these attacks
on compromising secrets and relaxing security guarantees.

2.2.1 Cache Attacks

Cache attacks create an unconventional information channel between two separate security
domains by exploiting CPU caches shared across these domains [182, 223, 265]. Adversaries
can exploit cache attacks where they share system cache with benign users. In scenarios
where adversaries can co-locate with a victim on the same CPU core, they can attack
core-private resources such as L1 cache, e.g., OS adversaries [245]. In some platform-as-
a-service (PaaS) cloud environment, virtualization platforms may allow sharing of logical
CPUs of a core to different VMs; however, attacks on the shared LLC have a higher
impact since the CPU cores share the LLC. In cache timing attacks, the attacker either
measure the timing of the victim operations, e.g., Evict+Time [267] or the timing of his
own memory accesses, e.g., Prime+Probe [182], Flush+Reload [384].

– 34 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

In a cache timing attack, the attacker generally needs to access an accurate time
resource such as rdtsc instruction. The rdtsc instruction reads the current value of
the time stamp counter (TSC), which is equivalent to the number of cycles since the
CPU resets. Since the CPU runs with a very high frequency, TSC serves as a very
high-precision timer. In platforms that such an instruction is not accessible, it is still
possible to craft high-resolution timers [301], e.g., by using a shared counter [223]. Note
that an architectural interface influenced by the cache’s behavior like the TSX can enable
cache attacks that do not require timers [91].

Resolution of cache attacks. The spatial resolution of cache attacks depends on a
cache line’s size, i.e., 64 bytes on most systems. This spatial resolution implies that cache
attacks can learn how victims’ memory access pattern spans across 64-byte granularity.
Note that memory-access patterns may belong to either data or code pages, as both
are frequently wang2017cached. In the former, the attacker can learn secret-dependent
memory lookups [182], while in the latter, the attacker can learn about secret-dependent
branches [226], at runtime. In the basic form, attacks perform a few observations per
an entire victim operation. The temporal resolution of an attack defines how often
an adversary can observe the victim’s access pattern. In specific scenarios, adversaries
can improve these attacks’ temporal resolution by interrupting the victim and collecting
information about the intermediate memory states [133].

Flush+Reload. We now discuss some of the standard exploitation techniques that
attackers can use to exploit the cache as a side channel. Flush+Reload is a cache-attack
technique that exploits the difference in memory-access times for wang2017cached and
unwang2017cached shared memory addresses [384]. In a Flush+Reload attack, the
attacker flushes the cache line for a shared memory address using the clflush instruction
and, after a few cycles, measures the time for accessing this target address. In the
meantime, if nobody accesses this address, the CPU does not cache the data, so the
attacker will observe that the access time is high. However, if another execution context
accesses the address, the CPU caches the data, and the attacker will observe a fast access
time.

Based on the Flush+Reload technique, Researchers have demonstrated attacks to steal
cryptographic keys [31, 130, 133, 186, 270] as well as to spy on user’s behavior [130]. In
practice, Flush+Reload is only applicable to environments where the victim and attacker
share memory pages. Some cloud environments may support the sharing of read-only
code pages across different VMs to optimize memory usage [309]. As the clflush
instruction follows the same protection rules as memory load operations, attackers can
use this technique to spy on these shared code pages, e.g., tracking the runtime decision

– 35 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

of a particular branch instruction when accessing different cache lines. More recently,
transient execution attacks use Flush+Reload as covert channel [207, 224, 300]. Similarly,
in Chapter 3, we use the Flush+Reload to construct a covert channel from the transient
to the architectural domain [247].

Prime+Probe attack. Prime+Probe is another cache-attack technique that is more
flexible, as it only needs access to shared caches but does not require access to shared
memory pages. In the Prime+Probe attack, the attacker first fills an entire cache set by
accessing memory addresses that point to the same cache set, the eviction set. Later,
the attacker checks whether the victim program has displaced any entry in the cache set
by reaccessing the eviction set and measuring the execution time. If this is the case, the
attacker can detect congruent addresses since the displaced entries cause increased access
time.

Prime+Probe is widely applicable to various threat models and attack scenarios.
However, the attacker requires finding an eviction set, which is more difficult for the LLC
due to the translation of virtual addresses to physical addresses. Note that the CPU
maps the data to different cache sets of the LLC using the physical address. Previous
attacks have used software interfaces such as hugepages [155] or the virtual-to-physical
page mapping in the pagemap file of Linux [223] to overcome this challenge. Nowadays,
most OSes restrict user-level applications to access these interfaces due to the associated
security risk. As a result, we later show how leakage of the physical page mapping from
the microarchitecture can boost the Prime+Probe attack [187].

2.2.2 Generalization to other Shared Resources

Researchers have applied techniques from cache attacks to other microarchitectural buffers
that behave like a cache, e.g., branch predictors [6, 8, 104] and TLB [123]. Similarly,
adversaries who share these resources with security-critical benign applications can learn
about the memory-access and execution pattern of victims through timing the usage
of these resources [115]. In general, memory components such as cache and internal
buffers are not the only microarchitectural attack surfaces. Adversaries can exploit other
microarchitectural components such as execution ports [15] and execution units e.g.,
floating-point unit [21] to construct side channels.

With the wide-spread use of SMT, core-private side-channel attacks have gained more
attention, as attacks such as Portsmash [15] are only feasible due to real-time sharing of
core-private resources, which otherwise were not practical. Side-channel attacks exploiting
cache bank conflicts also rely on synchronous resource contention [385]. In a cache bank
conflict attack like the CacheBleed [385], the adversary repeatedly performs simultaneous

– 36 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

reads, which are enabled thanks to SMT, to the same cache bank and measures their
completion time. A victim on a co-located sibling CPU thread who access the same
cache bank cause latency to the attacker’s memory reads. Toward the same direction,
in Section 2.3, we discuss our contribution of an attack that stems from simultaneous
access to addressing logics within the CPU core.

2.2.3 Side-channel Leakage in Practice

Memory-access and execution patterns leak information about data-dependent memory
operations and control flow decisions at runtime. These patterns are used to steal secrets
such as cryptographic keys [197, 270], or user’s password [222], to bypass software
protections such as Address Space Layout Randomization (ASLR) [103], or to spy on
other users [136]. We discuss some of these use cases in more detail.

Cryptographic leakage. Side-channel leakage on cryptographic implementations oc-
curs because of secret-dependent operations with visible footprints. Researchers have
demonstrated side-channel cryptanalysis in both network and local adversarial scenar-
ios [54, 228, 267]. As mentioned, a typical model for exploiting microarchitectural
side channels is for a spy process to cause resource contention with a victim process
and to measure the timing of its own or the victim operations [182, 281, 340]. The
observed timing behavior leaks critical runtime metadata from cryptographic subrou-
tines. Among the shared resources, cache attacks have received significant attention,
and researchers have demonstrated their practicality in scenarios such as cloud comput-
ing [128, 155, 182, 281, 384, 390]. A distinguishable feature of cache attacks is tracking
memory accesses with high temporal and spatial resolution. Thus, they excel at exploiting
cryptographic implementations with secret dependent memory accesses [31, 154, 267, 343].
Examples of such vulnerable implementations include using S-Box tables [364], modular
exponentiation, and scalar multiplication based on pre-computed values [143, 206].

Constant-time implementations have virtually eliminated the first generation of side-
channel cryptanalysis that exploit apparent secret-dependent timing behavior. The
standard view is that the performance penalty is the only downside that is no need
to be further worried once paid. However, this is far from reality, and constant-time
implementations may give a false sense of security. A commonly overlooked fact is
that constant-time implementation and related protections are relative to the underlying
hardware [116]. Major obstacles are preventing us from obtaining correct constant-
time behavior. CPUs continuously evolve with new microarchitectural features rolled
quietly with each new release, and the variety of such subtle features makes comprehensive
evaluation impossible. A great example is the cache bank conflicts attack against OpenSSL

– 37 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

RSA scatter-gather implementation [385]: it shows that adversaries with intra-cache-line
resolution can successfully bypass constant-time techniques relied on cache-line granularity.
Consequently, what might appear as a perfect constant-time implementation becomes
insecure in the next CPU release – or worse – an unrecognized behavior might be discovered,
invalidating the earlier assumption.

Weakening security. Knowledge of address mappings that are only available to the
privileged software weakens software systems’ security against microarchitectural side
channels. In some threat models, the randomization of virtual addresses by the OS is
considered the secret to strengthening software security against architectural vulnerabilities,
e.g., buffer overflows. For example, the kernel address space layout (KASLR) mitigation re-
duces the impact of software-based vulnerabilities within the OS kernel by making it harder
to find code gadgets. Microarchitectural attacks can recover virtual address information
and break KASLR by exploiting the Translation Lookaside Buffer (TLB) [152], Branch
Target Buffer (BTB) [103] and Transactional Synchronization Extensions (TSX) [188].
Additionally, Gruss et al. [126] exploit the timing information obtained from the prefetch
instruction to leak the physical address information. The main obstacle to this approach
is that the prefetch instruction is not accessible in JavaScript, and one can disable such
instructions in sandboxed environments [386]. In contrast, our technique in Section 2.4
applies to sandboxed environments, including JavaScript.

2.2.4 The Rowhammer Paradigm

Leaky DRAM cells. DRAM cells, responsible for storing bits of data, leak over time,
and need to be refreshed periodically to maintain their data. At the microarchitectural
level, DRAM consists of multiple memory banks, and each bank has several rows. When
the CPU accesses a memory location, the memory controller, with the DRAM’s help,
activates the corresponding row and loads it into a row buffer. If the CPU reaccesses the
same row, it is called a row hit, and the row buffer will serve the request. Otherwise,
it is called a row conflict. The previous row will be deactivated and copied back to the
original row location, after which the memory controller actives the new row. The memory
controller on the DRAM or the CPU has to refresh all the DRAM rows periodically by
copying them to and from the row buffer. If the refresh cycle fails to refresh the victim
row fast enough, that leads to bit flips, i.e., memory errors.

Rowhammer. The rowhammer attack [202] repeatedly causes cells within a victim
row to leak faster by activating the neighboring rows under the control of the attacker.
Researchers have demonstrated that neighboring rows’ electromagnetic effect causes

– 38 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

more frequent bit flips before the refresh cycle mitigates such an error. Some memory
cells are more susceptible to this phenomenon due to inconsistencies introduced during
manufacturing. Once attackers locate cells that suffer from random bit flips, they can
exploit it by tricking victims into placing a security-critical data structure or code page at
that particular location and triggering the bit flip again [125, 304, 377].

The rowhammer attack requires fast access to the same DRAM row through bypassing
the CPU cache, e.g., using clflush [202]. Additionally, cache eviction based on an
eviction set can also result in access to DRAM cells when clflush instruction is not
available [25, 127]. Efficiently building eviction sets may thus also enhance rowhammer
attacks. It is essential for a successful rowhammer attack to collocate multiple memory
pages within the same bank and adjacent. The memory controller uses several bits of
the physical address, depending on the hardware configuration, to map memory pages to
banks [273]. Since the rows are generally placed sequentially within the banks, access to
adjacent rows within the same bank will become relatively more straightforward for the
attackers if they have access to contiguous physical pages.

Insufficient mitigation for security. Although several countermeasures exist to miti-
gate the impact of errors for DRAM cells, they often fail to prevent intentional bit flips
that are initiated by a determined attacker. One approach would be to reduce the refresh
cycle to decrease the chance of bit flips. Reducing the refresh cycle comes with extra
overhead, as the memory controller has to spend more time on refresh commands, which
blocks regular memory operations. Besides, this approach does not even provide strong
protection against rowhammer [201, 367]. Some DRAMs support error-correcting codes
(ECC), but the ECC on DRAMs can only detect and fix up to 2 or 3 bits errors due
to performance constraints. Researchers have shown that rowhammer is still possible
on DRAMS with ECC [75], and failures due to the ECC checks provide an oracle for
attackers to leak data bits [216]. Another widely-deployed mitigation, target-row refresh
(TRR), aims to adaptively refresh rows adjacent to accessed rows to reduce the chance
of intentional bit flips. However, TRRespass [111] confirms that this ad-hoc approach is
insufficient to protect against these attacks fully.

2.3 MemJam Attack on Virtual Address Aliasing

Contribution of MemJam. As we have mentioned, constant-time implementation
techniques have become an indispensable tool in fighting microarchitectural side-channel
attacks. These techniques engineer the memory accesses of cryptographic operations to
follow a uniform key independent pattern. However, constant-time behavior is dependent

– 39 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

on the underlying architecture, which can be highly complex and often incorporates
unpublished features. The CacheBleed attack is based on cache-bank conflicts. Therefore,
it invalidates that microarchitectural side channels can only observe memory with cache-
line granularity [385]. In this section, we propose MemJam, which utilizes 4k aliasing to
establish a side-channel attack that exploits memory’s false dependency read-after-write
events and provides a high-quality intra-cache-line timing channel [246]. We show how to
dramatically slow down the victim’s access to the specific memory blocks and how attackers
can use this read latency to recover low address bits of the victim’s memory accesses.
Compared to CacheBleed, which is limited to older CPU generations, MemJam is the
first intra-cache-line attack applicable to all significant Intel CPUs, including the latest
generations, and also applies to the SGX environment. In Section 6.1, we use MemJam
to demonstrate key recovery against three different cryptographic implementations that
are resistant against cache attacks.

2.3.1 False Dependencies due to 4k Aliasing

MemJam uses false dependencies. Data dependency occurs when an instruction refers
to the data of a preceding one. In pipelined designs, hazards and pipeline stalls can
occur from dependencies if the previous instruction has not finished. There are cases
where false dependencies occur, i.e., the pipeline stalls even though there is no true
dependency. False dependencies could occur for several reasons, including, but not
limited to, register reuse, and limited address space for the execution units. False
dependencies degrade instruction-level parallelism and cause overhead. Modern CPUs
eliminates false dependencies arising from register reuse by a register renaming approach.
However, like Intel, CPU manufacturers provide optimization guidelines for the software
and compiler developers to address some of these false dependencies with software
workarounds [163, 164], e.g., partial register stalls.

4k aliasing. In this contribution, we focus on a critical false dependency described as
4k aliasing. The CPU may see data blocks multiplying 4k apart in the address space as
a dependent. 4k aliasing happens due to virtual addressing of L1 cache, where data is
accessed using virtual addresses but tagged and stored using physical addresses. Multiple
virtual addresses can refer to the same data with the same physical address, and the
ultimate determination of dependency for concurrent memory accesses requires virtual
address translation. Physical and virtual addresses share the last 12 bits, and any data
accesses whose addresses differ in the last 12 bits (i.e., the distance is not 4k) cannot
have a dependency. For the reasonably rare remaining cases, address translation needs to
be done before resolving the dependency, which causes latency. Note that dependencies

– 40 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

can occur at the word or cache line granularity (i.e., ignoring the last 2, or last 6 bits of
the address, respectively). We exploit these rare false dependencies due to 4k aliasing to
spy on the memory. Attackers can deliberately process falsely dependent memory accesses
by matching their address’s last 12 bits with a security-critical address inside a victim
process.

Multiple references mention 4k aliasing as an optimization problem existing on all
major Intel CPUs [107, 163]. We verify the results of Yarom et al. [385], the only security-
related work regarding false dependencies, which mentioned write-after-read dependencies.
The resulting timing leakage by store stall after a load is not sufficient to be used in any
practical attack, e.g., stealing cryptographic keys. MemJam exploits a different channel
due to the false dependency of read-after-write, which causes a higher latency and is thus
merely observable. Intel Optimization Manual highlights the read-after-write performance
overhead in various sections [163]. As described in Section 11.8 of this document, this
hazard occurs when a memory load closely follows a memory store. It causes the pipeline
to reissue the load operation with a potentially five cycles penalty. In contrast, to load
bounds, in Section B.1.4 on memory bounds, the top-down microarchitectural analysis
method (TMAM) reports store bounds as a fraction of cycles with low execution port
utilization and small performance impact. This top-down characterization is a hierarchical
organization of event-based metrics that identify the dominant performance bottlenecks
in an application. These descriptions in various sections highlight that read-after-write
stall is considered more critical than write-after-read stall.

2.3.2 Memory Dependency Fuzz Testing

We performed experiments to evaluate the memory dependency behavior between two
sibling CPU threads within a core. In these experiments, we have thread A and B running
on the same physical core, but as different CPU threads, as shown in Figure 2.4. Both
threads perform memory operations; only thread B measures its timing and hence the
timing impact of introduced false dependencies.

Experimental setup and assumptions. Our experimental setup is a Dell XPS 8920
desktop machine with an Intel Core i7-7700 CPU running Ubuntu 16.04. The Core i7-7700
has four hyper-threaded physical cores. Our only assumptions are that the attacker can
co-locate on one of the CPU pairs (CPU threads) within the same physical core as the
victim.

Read-after-read (RaR). In the first experiment, the two logical threads A and B
read from the same shared cache and can potentially block each other. This experiment

– 41 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Figure 2.4: Thread A and B both run on the same core, and introduce and probe stall
hazards.

loop:
rdtscp;
mov %eax, (%r9);
movb 0x0000(%r10), %al;
movb 0x1000(%r10), %al;
movb 0x2000(%r10), %al;
movb 0x3000(%r10), %al;
movb 0x4000(%r10), %al;
movb 0x5000(%r10), %al;
movb 0x6000(%r10), %al;
movb 0x7000(%r10), %al;
add $4, %r9;
dec %r11;
jnz loop;

Listing 2.1: Probe Reads

loop:
rdtscp
mov %eax, (%r9);
movb %al, 0x0000(%r10);
movb %al, 0x1000(%r10);
movb %al, 0x2000(%r10);
movb %al, 0x3000(%r10);
movb %al, 0x4000(%r10);
movb %al, 0x5000(%r10);
movb %al, 0x6000(%r10);
movb %al, 0x7000(%r10);
add $4, %r9
dec %r11
jnz loop

Listing 2.2: Probe Writes

Figure 2.5: Listings 1 and 2 are used to probe 8 parallel reads and writes, respectively. r9
points to a measurement buffer, and r11 is initialized with the probe count.

can reveal cache bank conflicts, as used by CacheBleed [385]. B uses Listing 2.1 to
perform read measurements, and A repeatedly reads from different memory offsets and
tries to introduce conflicts. A reads from three different type of offsets: (1) Different
cache line than B, (2) same cache line, but different offset than B, and (3) same cache
line and same offset as B. The results in Figure 2.6 show that we can not observe
any difference between the histograms for three cases. This experiment verifies the lack

– 42 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
10

6

Non-conflicted CL

mean(Non-conflicted CL)

Conflicted CL

mean(Conflicted CL)

Conflicted Offset

mean(Conflicted Offset)

Figure 2.6: Three different scenarios where the two CPU threads perfrom memory loads
to different cache lines (green), same cache line (blue) and same offset (red). The three
histograms are almost indistinguishable.

of cache bank conflicts on the 7th generation Intel CPUs, as we would otherwise have
observed simultaneous loads to the same cache offset to be distinguishable from the other
two cases.

Write-after-read (WaR). In this experiment, thread A constantly loads from different
type of memory offsets, while thread B uses Listing 2.2 to perform measurements of
store operations. Figure 2.7 shows the three histograms for the second experiment on the
potential false dependency of write-after-read. The standard deviation for conflicted cache
line (blue) and conflicted offset (red) between thread A and B is distinguishable from the
green bar where there is no cache line conflict. This observation shows a high capacity
cache granular behavior. Still, the slight difference between conflicted line (blue) and offset
(red) verifies the previous results stating a weak leakage due to offset dependency [385].

Read-after-write (RaW). Figure 2.8 shows an experiment on measuring false depen-
dency of read-after-write, in which thread A frequently stores to different memory offsets.
Thread B uses Listing 2.1 to perform measurements of load operations. Accesses to three
different types of offsets are distinguishable. The conflicted cache line accesses (blue) are
distinguishable from non-conflicted accesses (green). More importantly, conflicting ac-
cesses to the same offset (red) are also distinguishable from conflicted cache line accesses.

– 43 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

20 40 60 80 100 120 140 160
0

0.5

1

1.5

2
10

6

Non-conflicted CL

mean(Non-conflicted CL)

Conflicted CL

mean(Conflicted CL)

Conflicted Offset

mean(Conflicted Offset)

Figure 2.7: Similar to Figure 2.6, three different offsets are tested. We can easily distin-
guish cache-granular accesses when testing write-after-read dependencies, but detecting
intra-cache-line leakage is not practical using this strategy.

We exploit this timing behavior for introducing a side channel with an intra-cache-line
granularity. There is an average of 2 cycle penalty if we access the same cache set and
a ten cycles penalty if we access the same offset. Note that we separately verified that
the word offsets in our platform have 4-bytes granularity. From an adversarial standpoint,
this means that an adversary learns about bits 2-11 of the victim’s memory access, in
which 4 bits (bits 2-5) are intra-cache-line information, and thus goes beyond any other
microarchitectural side channels that are known to exist on 6th and 7th generation Intel
CPUs. We later discuss how we can exploit this extra information (in Figure 2.9), for
demonstrating practical attacks.

Read-after-weak-Write (RawW). In this follow-up experiment on the read-after-
write conflicts, we tried a less greedy strategy on the conflicting thread. Rather than
continually performing store operations to the same offset, A stores to the same memory
offset with some gaps filled with other memory accesses and instructions. Figure 2.10
shows that the channel dramatically becomes less effective. This observation tells us that
the load penalty will be more effective with frequently performing stores to the same
offset without additional instruction between the memory load operations. In this regard,
we will use Listing 2.3 in our attack to achieve the maximum contentions.

– 44 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
10

6

Non-conflicted CL

mean(Non-conflicted CL)

Conflicted CL

mean(Conflicted CL)

Conflicted Offset

mean(Conflicted Offset)

Figure 2.8: RaW latency has distinguishable characteristics for the conflicted word offset
(red).

Read-after-Write latency. In the last experiment, we tested the delay of execution
over various conflicting memory loads. We created a code stub with 64 memory load
instructions and a random combination of instructions between memory loads to make a
more realistic computation. We chose the combination to avoid unexpected halts and
maintain the parallelism of all load operations. We measure this computation’s execution
time on B, while A is storing to a conflicting offset. First, we measured the computation
with 64 memory loads to separate addresses without conflicts. Our randomly generated
code stub takes an average of 210 cycles to execute. On each step of the experiments, as
shown in Figure 2.11, we change some of the memory offsets to have the same last 12
bits of address as the conflicting offset of store operations on A.

We observe growth in the latency for memory loads by increasing the number of
conflicting loads. Figure 2.11 shows the results for several experiments. In all of them, the
overall execution time of B is strongly dependent on the number of conflicting memory
loads. Hence, we can use the RaW dependency to introduce assertive timing behavior
using bits 2-11 of a chosen target memory address.

2.3.3 Leaking with Intra-Cache-Line Resolution

MemJam exploits read-after-write false dependencies to introduce timing behavior to
otherwise constant-time implementations. An attacker who targets a cryptographic

– 45 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Least 12 Bits (Physical = Virtual)

L1 Cache
Addressing Bits

MemJam Leaked Address Bits

Intra Cache Line
Leakage

Figure 2.9: Intra-cache-line Leakage: MemJam latency is related to 10 address bits, in
which 4 bits are intra cache level bits.

20 30 40 50 60 70 80 90
0

0.5

1

1.5

2
10

6

Non-conflicted CL

mean(Non-conflicted CL)

Conflicted CL

mean(Conflicted CL)

Conflicted Offset

mean(Conflicted Offset)

Figure 2.10: RawW: Compared to Figure 2.8, this shows a lower impact on access latency.

operation can use the resulting latency for a correlation attack. MemJam proceeds with
the following steps:

1. attacker launches a process constantly writing to an address using Listing 2.3 where
the last 12 bits match the virtual memory offset of a critical data that is loaded by
the victim’s process.

2. While the attacker’s conflicting process is running, the attacker queries the victim
to perform a security-critical operation like encryption and records the output
ciphertext and execution time pair of the victim. Higher time means more access
to that critical offset.

3. attacker repeats the previous step, collecting ciphertext and time pairs.

– 46 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

mov %[target], %rax;
write_loop:

.rept 100;
movb $0, (%rax);
.endr;

jmp write_loop;

Listing 2.3: Write Conflict Loop: Unnecessarily instructions are avoided to minimize usage
of other CPU units and to maximize the RaW conflict effect.

10 20 30 40 50 60

Matched Read

210

220

230

240

250

260

C
y

c
le

Figure 2.11: The cycle count for mixed operations with RaW conflicts. More conflicts
cause higher delay.

Our attack methodology resembles the Evict+Time strategy proposed initially by
Tromer et al. [340], except that the attacker uses false dependencies due to 4K aliasing
rather than evictions to slow down the target and that the slowdown only applies to a
4-byte block of a cache line. Furthermore, all of the victim’s accesses addresses with the
same last 12 bits are slowed down while a cache eviction only slows the first memory
accesses.

Based on the intra-cache-line leakage in Figure 2.9, we can divide a 64-byte cache
line into 4-byte blocks and hypothesize that we can correlate the access counts to the
first one with the running time of the victim. Simultaneously, the attacker jams memory
loads to that (chosen first) block, i.e., the attacker expects to observe a higher time when
there are more accesses by the victim to the targeted 4-byte block and a lower time when
there is a lower number of accesses. Based on this hypothesis, we can apply a classical
correlation-based side-channel approach [208] to attack implementations of different block

– 47 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

ciphers, namely 3-DES, AES, and SM4. We will extensively discuss these cryptanalysis
results in Section 6.1.

Applicability of MemJam. MemJam exploits false dependencies of memory read-
after-writes across sibling CPU threads and turns this primitive into a technique similar
to cache-based timing attacks, but with a 4-byte spatial resolution. Consequently,
countermeasures aimed at providing uniform accesses at cache-line granularity do not
protect against MemJam. For MemJam to work, the false dependencies need to impact
the memory load operations after a false conflicting store. Section 2.3.3 highlights the
availability of the cache bank conflicts and the 4k aliasing leakage source: While bank
conflicts are limited to few CPU generations, 4k aliasing is present in all Intel CPUs
released in the last ten years. Thus, MemJam applies to all Intel CPUs that support
SMT, e.g., Intel hyperthreading. In Section 6.1, we show how MemJam enables novel
cryptanalysis of several encryption schemes.

Release Family Cache Bank Conflicts 4k aliasing

2006 Core
2008 Nehalem ×
2011 Sandy bridge
2013 Silvermont, Haswell, Broadwell ×
2015 Skylake ×
2016 KabyLake ×

Table 2.1: Intel CPU families and availability of the leakage channels. Major Intel CPUs
suffer from 4k aliasing and are vulnerable to MemJam [107].

2.4 Beyond MemJam: Physical Address Aliasing

In MemJam [244], we verified a false dependency hazard within the memory order buffer,
in which memory operations on non-colliding physical addresses that share the same least
12 significant bits affect each other. We exploit this behavior from separate CPU threads
within a core to construct a microarchitectural timing side channel. Sullivan et al. [328]
demonstrate a covert channel based on the same 4k aliasing behavior. The authors
conclude that an address aliasing check is a two-stage approach: Firstly, it uses page
offset for the initial guess. Secondly, it performs the final resolution based on the exact
physical address. However, complex memory subsystems may introduce undocumented
false dependency hazards.

– 48 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Contribution of Spoiler. Contrary to public knowledge, we discover that the undocu-
mented address resolution logic performs additional partial address checks that lead to a
strange but observable aliasing behavior based on the physical address. This undocumented
behavior is independent of the aforementioned 4k aliasing behavior [107, 244, 328, 385].
The discovered false dependency happens during the 1MB aliasing on the physical address
of speculative memory accesses.

As discussed in Section 2.1, Speculative loads and store forwarding are techniques
to improve the memory bottleneck in a pipelined out-of-order CPU. The CPU executes
the load speculatively and forwards the data of a preceding store to the load if there
is a dependency. This enhances performance since the load does not have to wait for
preceding stores to complete. However, the dependency prediction relies on partial
address information, which may lead to false dependencies. we observe that failure to
resolve false dependencies promptly creates stall hazards, which allows an attacker to
construct a new timing side channel.

In this work, we are the first to exploit the dependency resolution logic during
speculative loads as a timing channel to gain physical address information. We propose
the Spoiler attack, which exploits this channel to gain information about the physical
page number’s eight least significant bits. Then, we discuss how Spoiler improves
the Prime+Probe cache-attack technique and rowhammer attacks. Further, we discuss
the possibility of single-threaded MemJam attacks where the attacker tracks a victim’s
memory load after a context switch.

2.4.1 Speculative Load Hazards

Memory loads are executed out-of-order, and they may execute before preceding memory
stores. If one of the preceding stores modifies the content of a location in memory,
the memory load address is referring to, out-of-order execution of the load will operate
on stale data, which corrupts the program’s state. This out-of-order execution of the
memory load is a speculative behavior since there is no guarantee during the execution
time of the load that the virtual addresses corresponding to the memory stores do not
conflict with the load address after translation to physical addresses.

Figure 2.12 demonstrates this effect on a hypothetical CPU with 7 pipeline stages. As
multiple stores may be blocked due to limited resources, the execution of the load and
dependent instructions in the pipeline, the load block, will bypass the stores since the
MOB assumes the load block to be independent of the stores. This speculative behavior
improves the memory bottleneck by letting other instructions continue their execution.
However, suppose the dependency of the load and preceding stores is not verified. In
that case, the load block may consume incorrect data, which is either falsely forwarded by

– 49 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Hazard

store a → X
store b → Y
store c → Z
load d← W
inc d

F D X1 X2 X3 X4 C

Busy
Resource

Load Block
Bypasses Stores

Dependency Check
Before Commit

(State 1) (State 2) (State 3) (State 4)

Flush The Pipeline

Figure 2.12: The speculative load is demonstrated on a hypothetical CPU with 7 pipeline
stages: F = Fetch, D = Decode, X1−4 = Executions, and C = Commit. When the
memory stores are blocked competing for resources (State 1), the load will bypass
the stores (State 2). The load block including the dependent instructions will not be
committed until the dependency of the address W versus X,Y ,Z are resolved (State 3).
In case of a dependency hazard (State 4), the pipeline is flushed and the load is restarted.

store forwarding (false dependency) or loaded from a stale cache line (a true unresolved
dependency). If the CPU detects a false dependency before committing the load, it
has to flush the pipeline and re-execute the load block. This flushing and reissuing of
instructions will cause observable performance penalties and potentially a timing behavior
detectable by an attacker.

Dependency resolution. Dependency checks and resolution occur in multiple stages
depending on the availability of the address information in the store buffer. A load
instruction needs to be checked against all preceding stores in the store buffer to avoid
false dependencies and ensure the correctness of the data. A potential design in Intel
patents [146, 212] suggests three stages for the dependency check and resolution, as
shown in Figure 2.13. Note that the exact implementation of the MOB used in Intel
CPUs is unpublished, and therefore we cannot be sure about the precise architecture.
However, our results agree with some of the possible design choices described in these
Intel patents. The three stages are as the following:

1. Loosenet: The first stage is the loosenet check where the page offsets of the load
and stores are compared. In the case of a loosenet hit, the compared load and
store may be dependent, and the CPU will proceed to the next check stage.

2. Finenet: The next stage, called finenet, uses upper address bits. 5 The finenet
can be implemented to check the upper virtual address bits [146], or the physical
address tag [212]. Either way, it is an intermediate stage, and it is not the final
dependency resolution. In the case of a finenet hit, the CPU blocks the load and
forwards the store data; otherwise, the dependency resolution will go into the final
stage.

– 50 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Yes

No

Loosenet
 Hit? No

Yes No

Finenet
 Hit?

Yes

No
Physical
Address
Match?

Block Load /
Forward Store

Proceed with
Load

Redispatch
Load

Yes

No
Partial

Physical Addr
Hit?

Figure 2.13: The dependency check logic: loosenet initially checks the least 12 significant
bits (page offset) and the finenet checks the upper address bits, related to the page
number. The final dependency using the physical address matching might still fail due to
partial physical address checks.

3. Physical Address Matching: At the final stage, the addressing logic will check
the physical addresses. Since this stage is the final chance to resolve potential
false dependencies, we expect the addressing logic to check the full physical ad-
dress. However, one possible design suggests that if the physical addresses are not
available, the physical address matching returns true and continues with the store
forwarding [146].

Since the page offset is identical between the virtual and physical address, a potential design
can perform the loosenet check as soon as the store is decoded. Intel optimization
manual [163] and the event Ld_Blocks_Partial:Address_Alias from Intel hardware
performance counters refer to loosenet as a mechanism that only compare the page offsets.
Therefore loosenet checks resemble the same behavior that MemJam exploits.

According to some Intel patents, the store buffer may only hold bits 19 to 12 of the
physical address [3]. Although the physical address buffer holds the full translated physical
address, it is not clear at which stage this information can be available to the MOB. As
a result, the finenet may check the partial physical address bits. As we discover later,
the dependency resolution logic fails to resolve the dependency at multiple intermediate
stages due to the full physical address’s unavailability.

2.4.2 The Spoiler Leakage

The attack model for Spoiler is the same as rowhammer and cache attacks, where
the attacker executes code on the same underlying hardware as the victim. As described
in Section 2.4.1, speculative loads may face other aliasing conditions in addition to the 4k

– 51 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Algorithm 1 Address Aliasing
for p from w to PAGE_COUNT do

for i from w to 0 do
data

store−−−→ buffer[(p− i)× PAGE_SIZE]

t1 = rdtscp()

data
load←−− buffer[x× PAGE_SIZE]

t2 = rdtscp()
measure[p]← t2 − t1

return measure

aliasing due to the partial checks on the higher address bits. To confirm this, we design
an experiment to observe a speculative load’s timing behavior based on higher address
bits.

In this experiment, we propose Algorithm 1 that executes a speculative load after
multiple stores and further make sure to fill the store buffer with addresses that cause
4k aliasing during the execution of the load. Having w as the window size, the algorithm
iterates over several different memory pages. For each page, it performs stores to that
page and all previous w pages within a window. Since the store buffer size varies between
different CPU generations, we choose a big enough window (w = 64) to ensure that the
load has 4k aliasing with the maximum number of entries in the store buffer and hence
maximizing potential conflicts. Following the stores, we measure the timing of a load
operation from a different memory page, as defined by x.

Since we want the load to be executed speculatively, we can not use a store fence
such as mfence before the load. As a result, our measurements estimate execution
time for the speculative load and nearby microarchitectural events. This estimation may
include a negligible overhead for the execution of store operations and any delay due to the
dependency resolution. If we iterate over a diverse set of addresses with different virtual
and physical page numbers but the same page offset, we should monitor discrepancies.

rdtscp;
mov %eax, %esi;
mov (%rbx), %eax;
rdtscp;
mfence;
sub %esi, %eax;

Listing 2.4: Timing measurement of a speculative load.

– 52 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Speculative dependency analysis. We now use Algorithm 1 and Hardware Perfor-
mance Counters (HPC) to perform an empirical analysis of the dependency resolution
logic. HPCs can keep track of low-level hardware-related events in the CPU. The counters
are accessible via special purpose registers and can be used to analyze a program’s perfor-
mance. They provide a powerful tool to detect microarchitectural components that cause
bottlenecks. Software libraries such as Performance Application Programming Interface
(PAPI) [334] simplifies programming and reading low-level HPC on Intel CPUs.

Initially, we execute Algorithm 1 for 1000 different virtual pages. Figure 2.14(a) shows
the cycle count for each iteration with a set of 4 kB aliased store addresses. Interestingly,
we observe multiple step-wise peaks with very high latency. Then, we use PAPI to monitor
30 different performance counters while running the same experiment. At each iteration,
we only monitor one performance counter alongside the timing, as mentioned earlier.
After each speculative load, the performance counter value and the load time are both
recorded. Finally, we obtain the timings and performance counter value pairs, as depicted
in Figure 2.14.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

C
y
c
le

s

rdtsc

(a) Step-wise peaks with a very high latency can be observed on some of the virtual
pages

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

C
y
c
le

s

Stalls_Ldm_Pending

(b) Affected HPC event: Cycle_Activity:Stalls_Ldm_Pending

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

D
e

p
e

n
d

e
n

c
y

Address_Alias

(c) Affected HPC event: Ld_Blocks_Partial:Address_Alias

Figure 2.14: Spoiler’s timing measurements and hardware performance counters recorded
simultaneously.

– 53 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

To find any relation between the observed high latency and a particular event, we
compute correlation coefficients between counters and the timing measurements. Since
the latency only occurs in the small region of the trace where the timing increases, we only
need to compute these regions’ correlation. When an increase of at least 200 clock cycles
is detected, we use the following s values from timing and the HPC traces to calculate
the correlations, where s is the number of steps from Table 2.2 and 200 is the average
execution time for a load.

-1

-0.5

0

0.5

1

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

0 5 10 15 20 25 30

Counter Number

Figure 2.15: Correlation with various HPC events. Ld_Blocks_Partial:Address_Alias
and Cycle_Activity:Stalls_Ldm_Pending (both dotted red) have strong positive and
negative correlations, respectively.

As shown in Figure 2.15, two events have a high correlation with the leakage:
Cycle_Activity:Stalls_Ldm_Pending has the highest correlation of 0.985. This event
shows the cycle count when the execution stalls due to a pending load. This event
Ld_Blocks_Partial:Address_Alias counts the number of false dependencies in the MOB
when loosenet resolves the 4k aliasing condition and has an inverse correlation with the
leakage. Separately, Exe_Activity:Bound_on_Stores increases with more number of
stores within the inner window loop in Algorithm 1, but it does not have a correlation
with the leakage. The reason behind this behavior is that the store buffer is full, and
additional store operations are pending. However, since there is no correlation with the
leakage, we conclude that the timing behavior is not due to the stores delay. We also
attempt to profile any existing counters related to the memory disambiguation. However,
the events Memory_Disambiguation.Success and Memory_Disambiguation.Reset are not
available on the modern architectures that are tested.

Leaking the physical address mapping. In this experiment, we evaluate the observed
step-wise latency and its relationship with the physical page numbers by observing the
pagemap file. As shown in Figure 2.16, we observe step-wise peaks with a very high
latency, which appears once in every 256 pages on average. The 20 least significant bits

– 54 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

0 100 200 300 400 500 600 700 800 900 1000

Page Number

0

500

1000

1500

C
y
c
le

5

1

22

15

Figure 2.16: Step-wise peaks with 22 steps and a high latency can be observed on some
of the pages (Core i7-8650U CPU).

of the physical address for the load match the physical addresses of the stores where
we observe high peaks for virtual pages. We always detect peaks with different virtual
addresses in our experiments with the same last 20 physical address bits. This observation
discovers the existence of 1MB aliasing effect based on the physical addresses. This 1MB
aliasing leaks information about 8 bits of mapping unknown to the userspace processes.

This observation matches our previous observation of high correlation for the event
Cycle_Activity:Stalls_Ldm_Pending. Consequently, the speculative load suffers from
stalls to resolve the dependency with conflicting store buffer entries after the occurrence
of a 1MB aliased address. This observation verifies that the latency is due to the pending
load. When the latency is at the highest point, the event that counts 4k aliasings,
Ld_Blocks_Partial:Address_Alias drops to zero, and it increments at each down step
of the peak. This behavior implies that the loosenet check does not resolve the rest of
the store dependencies whenever there is a 1MB aliased address in the store buffer.

Further evaluation. In the previous experiment, the execution time of the load oper-
ation that is delayed by 1MB aliasing decreases gradually in each iteration (Figure 2.16).
The number of steps to reach the expected execution time is consistent on the same CPU.
When the first store in the window loop accesses a memory address with the matching
1MB aliased address; the latency is at its highest point, marked as “1” in Figure 2.16.
As the window loop accesses this address later in the loop, it appears closer to the load
with a lower latency like the steps marked as 5, 15, and 22. This observation matches the
carry chain algorithm described by Intel [146], where the aliasing check starts from the
most recent store.

As shown in Table 2.2, experimenting with various CPU generations shows that the
number of steps has a linear correlation with the store buffer size, which depends on the
microarchitecture. While the leakage exists on all Intel Core CPUs starting from the first

– 55 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

CPU Model Architecture Steps SB Size

Intel Core i7-8650U Kaby Lake R 22 56
Intel Core i7-7700 Kaby Lake 22 56
Intel Core i5-6440HQ Skylake 22 56
Intel Xeon E5-2640v3 Haswell 17 42
Intel Xeon E5-2670v2 Ivy Bridge EP 14 36
Intel Core i7-3770 Ivy Bridge 12 36
Intel Core i7-2670QM Sandy Bridge 12 36
Intel Core i5-2400 Sandy Bridge 12 36
Intel Core i5 650 Nehalem 11 32
Intel Core2Duo T9400 Core N/A 20
Qualcomm Kryo 280 ARMv8-A N/A *
AMD A6-4455M Bulldozer N/A *

Table 2.2: 1MB aliasing on various architectures: The tested AMD and ARM architectures,
and Intel Core generation do not show similar effects. The Store Buffer (SB) sizes are
gathered from Intel Manual [163] and wikichip.org [369, 370, 371].

generation, the timing effect is higher for the more recent versions with a bigger store
buffer size. The analyzed ARM and AMD CPUs do not show similar behavior. Note that
we use rdtscp for Intel and AMD CPUs and the clock_gettime for ARM CPUs to
perform the time measurements.

As our time measurement for speculative load suggests, it is impossible to reason
whether the high timing is due to a very slow load or commitment of store operations.
Since the step-wise delay matches the store buffer entries, this delay may be due to
the dependency resolution logic performing a pipeline flush and restart of the load for
each 4 kB aliased entry starting from the 1MB aliased entry. Another hypothesis would
be that the load is waiting for all the remaining stores to commit because of an
unresolved hazard. We perform an additional experiment with all store addresses replaced
with non-aliased addresses except for one memory address to explore this further. This
experiment shows that the peak disappears if there is only a single 4 kB, and 1MB aliased
address in the store buffer.

Lastly, we run the same experiments on a shuffled set of virtual addresses to assure
that the contiguous virtual addresses may not affect the observed leakage. Our experiment
with the shuffled virtual addresses exactly matches the same step-wise behavior suggesting
that the upper bits in virtual addresses do not affect the leakage behavior. The leakage is
solely due to the aliasing on physical address bits.

– 56 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Figure 2.17: Histogram of the measurement for the speculative load with various store
addresses. Load will be fast, 30 cycles, without any dependency. If there exists 4k aliasing
only between the stores, the average is 100. The average is 200 when there is 4k aliasing
of load and stores. The 1MB aliasing has a distinctive high latency.

Comparison of address aliasing scenarios. We further test other address combi-
nations to compare additional address aliasing scenarios using Algorithm 1. As shown
by Figure 2.17, when stores and the load access different cache sets without aliasing,
the load is executed in 30 cycles, which is the typical timing for an L1 data cache load
including the rdtscp overhead. When the stores have different memory addresses with
the same page offset, but the load has a different offset, the load takes 100 cycles
to execute. Even memory addresses in the store buffer having 4k aliasing conditions
unrelated to the speculative load create a memory bottleneck for the load.

In the next scenario, 4k aliasing between the load and all stores, the average
load time is about 200 cycles. While the aforementioned 4k aliasing scenarios may leak
cross-domain information about memory accesses (Section 2.4.4), the most unexpected
behavior is the 1MB aliasing, which takes more than 1200 cycles for the highest point in
the peak. For simplicity, we refer to the 1MB aliased address as aliased address, in the
rest of this section.

The curious case of memory disambiguation. The CPU uses an additional spec-
ulative engine, called the memory disambiguator [92, 213], to predict false memory
dependencies and reduce the chance of their occurrences. The main idea is to predict if a
load is independent of preceding stores and proceed with the execution of the load by

– 57 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

ignoring the store buffer. The predictor uses a hash table indexed with the address of the
load, and each entry of the hash table has a saturating counter. If the pre-commitment
dependency resolution does not detect false dependencies, the predictor increments the
counter; otherwise, it resets the counter to zero. After multiple successful executions
of the same load instruction, the predictor assumes that the load is safe to execute.
Whenever the counter becomes zero, the predictor blocks nad check the next iteration of
the load against the store buffer entries. Mispredictions result in performance overhead
due to pipeline flushes. A watchdog monitors the prediction’s success rate and temporarily
disables the disambiguator to avoid repeated mispredictions.

The memory disambiguator’s predictor should go into a stable state after the first
few iterations since the memory load is always independent of any aliased store. Hence
the saturating counter for the target speculative load address passes the threshold, and
it never resets due to a false prediction. As a result, the memory disambiguator should
always fetch the data into the cache without access to the store buffer. However, since
the memory disambiguation performs speculation, the dependency resolution at some
point verifies the prediction. The watchdog only disables the memory disambiguator when
the misprediction rate is high, but in this case, we should have a high prediction rate.
Accordingly, the observed leakage occurs after the disambiguation. During the last stages
of dependency resolution, the memory disambiguator only performs prediction on the 4k
aliasing at the initial loosenet check. Consequently, It cannot protect the pipeline from
1MB aliasing appears at a later stage.

Hyperthreading effect. Motivated by MemJam [244], we empirically test to see
if one can use the 1MB aliasing as a covert/side channel through logical CPUs. Our
observation shows that when we run our experiments on two logical CPUs on the same
physical core, it causes the number of steps in the peaks to be halved. This finding
matches the description by Intel [163], where it states that the core splits the store
buffer between the logical CPUs. As a result, the 1MB aliasing effect is not visible and
exploitable across logical cores. However, we have seen that this observation is not valid
for 4K aliasing, although in some Intel patents, they suggest that loosenet checks should
mask out the stores on the opposite CPU thread.

2.4.3 Boosting Rowhammer and Cache Attacks with Spoiler

Knowledge of the physical address enables adversaries to weaken OS protections [199] and
improve microarchitectural side-channel attacks [223]. Microarchitectural side-channel
attacks such as rowhammer and cache attacks like the Prime+Probe rely on the virtual-
to-physical address mapping [182, 273]. Without this knowledge, cache attacks such as

– 58 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

Prime+Probe on the Last-Level Cache (LLC) are challenging due to the runtime mapping
of virtual addresses to cache sets and slices. Therefore, knowledge about the physical
page mappings enables more attack opportunities using the Prime+Probe technique.
Rowhammer [202] attacks require efficient access to rows within the same bank to induce
fast row conflicts. An adversary needs to reverse engineer layers of abstraction from the
virtual address space to DRAM cells to achieve this. The availability of physical address
information facilitates this reverse engineering process.

Yet, the operating system should only allow root privileges to know about the physical
address space. Previous attacks assume special privileges granted through weak software
configurations to overcome some of these challenges [182, 223, 354]. For instance, the
procfs filesystem exposes physical addresses [223], and Huge pages allocate contiguous
physical memory [182, 226]. On mobile platforms, Drammer [354] exploits the Android
ION memory allocator to access contiguous memory. GLitch [110] detects contiguous
physical pages by exploiting row buffer conflicts.

Orthogonal to row buffer conflicts, the Spoiler leakage speeds up this reverse
engineering of virtual-to-physical address mappings by a factor of 256 (due to 8-bit of
leakage). This leakage translates to improving the Prime+Probe attack by a 4096-factor
speed up of the eviction set search, even from sandboxed environments like JavaScript [187].
Spoiler is incredibly helpful for attacks in sandboxed low-privilege environments such as
JavaScript, where previous methods require a time-consuming brute-forcing of the memory
addresses [127, 265, 304]. Note that attacks are more limited in sandboxed environments
since adversaries have limited access to the address space, and some instructions are
also inaccessible [127]. However, Spoiler only relies on simple operations, load and
store, to recover crucial physical address information, which enables rowhammer and
cache attacks by leaking information about physical pages without assuming any weak
configuration or special privileges. We now discuss that Spoiler can boost both single-
and double-sided rowhammer attacks by its additional 8-bit physical address information
and resulting detection of contiguous memory. For a more detailed analysis of using
Spoiler for cache attacks and rowhammer, refer to the Spoiler paper [187].

DRAM bank co-location and single-sided rowhammer. For rowhammer, the
adversary needs to access DRAM rows adjacent to a victim row efficiently. In a single-
sided rowhammer attack, the attacker only activates one row repeatedly to induce bit
flips on one of the nearby rows. For this purpose, the attacker needs to make sure that
multiple virtual pages co-locate on the same bank. The probability of co-locating on the
same bank is low without knowing physical addresses and their mapping to memory banks.

DRAMA [273] reverse engineered the memory controller mapping. This reverse
engineering requires elevated privileges to access physical addresses from the pagemap

– 59 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

file. The authors have suggested using the prefetch side-channel attacks to gain physical
address information instead [126]. Spoiler is an alternative way to obtain partial address
information and is still feasible when the prefetch instruction is not available, e.g., in
JavaScript. We use Spoiler to detect aliased virtual memory addresses where the 20
least significant bits of the physical addresses match. The memory controller uses these
bits for mapping the physical addresses to the DRAM banks [273]. Even though the
memory controller may use additional bits, most of the bits are known using Spoiler.
An attacker can directly hammer such aliased addresses to perform a more efficient
single-sided rowhammer attack with a significantly increased probability of hitting the
same bank.

To verify if our aliased virtual addresses co-locate on the same bank, we use the row
conflict side channel as proposed in [110]. We observe that whenever the number of
physical address bits used by the memory controller to map data to physical memory is
equal to or less than 20, we always hit the same bank. For every extra bit that the memory
controller uses, we can divide the probability of hitting the same bank by two as there is
one more bit of entropy. In general, we can formulate that our probability p to hit the
same bank is p = 1/2n, where n is the number of unknown physical address bits in the
mapping. In summary, Spoiler drastically improves the efficiency of finding addresses
mapping to the same bank without administrative privilege or reverse engineering the
memory controller mapping.

Multi-sided rowhammer. For a double-sided rowhammer attack, we need to hammer
rows adjacent to the victim row in the same bank. The attacker tries to access two
different rows n + 1 an n − 1 to induce bit flips in the row n placed between them.
While double-sided rowhammer attacks induce bit flips faster due to the extra charge on
the nearby cells of the victim row n, they further require access to contiguous memory
pages. Alternatively, attackers can detect adjacent memory pages in the allocated virtual
address space since such memory rows are written to the banks sequentially. We will not
locate neighboring rows without contiguous memory since the memory controller maps
the randomly chosen physical pages to random DRAM banks.

An attacker can use Spoiler to detect contiguous memory using 1 MB aliasing
peaks. To prove this, we compare the physical frame numbers to the Spoiler leakage
for 10000 different virtual pages allocated using malloc. Figure 2.18 shows the relation
between 1 MB aliasing peaks, and physical page frame numbers. When the distance
between the peaks is random, the trend of frame numbers also changes randomly. After
around 5000 pages, we observe that the frame numbers increase sequentially. The number
of pages between the peaks remains constant at 256, where this distance comes from the
8 bits of physical address leakage due to 1 MB aliasing.

– 60 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

0

500

1000

C
y
c
le

s

0 2000 4000 6000 8000 10000

Page Numbers

1.5

2

F
ra

m
e

 N
u

m
b

e
rs 10

6

5641 5642 5643 5644 5645
1.982464

1.982466

1.982468
106

Figure 2.18: Relation between leakage peaks and the physical page numbers. The dotted
plot shows the leakage peaks from the Spoiler attack. The continuous plot shows the
physical frame numbers’ decimal values from the pagemap file. Once the peaks (the
dotted plot) become regular, the solid plot is linearly increasing, which shows contiguous
memory allocation.

2.4.4 Tracking Speculative Loads with Spoiler

Single-threaded attacks allow stealing information from other security contexts running
before/after the attacker code on the same thread [68, 245]. Example scenarios are
context switches between different users’ processes, between a user process and a kernel
thread, and Intel Software Guard eXtensions (SGX) secure enclaves [245, 352]. In such
attacks, adversaries bring the microarchitecture to a particular state and wait for the
context switching to the victim thread. Next, they observe the microarchitectural state
after the victim’s execution and context switching back to the attacker’s thread.

We propose an attack where the adversary (1) fills the store buffer with arbitrary
addresses, (2) issues the victim context switch and lets the victim perform a secret-
dependent memory access, and (3) measures the execution time of the victim. Any
correlation between the victim’s timing and the load address can leak secrets [385]. Due
to the nature of the Spoiler, the victim should access a security-critical memory address.
At the same time, there are aliased addresses in the store buffer, i.e., if the stores are
committed before the victim’s speculative load, there will be no dependency resolution
hazard.

To investigate the viability of Spoiler attack, we first analyze the depth of the
operations that we can execute between the stores and the load In this experiment,
we repeat several instructions between stores and the load that are free from memory

– 61 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

operations. Figure 2.19 shows the number of stall steps due to the dependency hazard
with the added instructions. Although nop is not supposed to take any cycle, adding 4000
nop will diffuse the timing latency. Then, we test add and leal, which use the Arithmetic
Logic Unit (ALU) and the Address Generation Unit (AGU), respectively. Figure 2.19 shows
that only 1000 adds can be executed between the stores and load before the Spoiler
effect is lost. Since each add typically takes about 1 cycle to execute, this roughly gives
a 1000 cycle depth for Spoiler. Considering the observed depth, we discuss potential
attacks that can track the speculative load in the following two scenarios.

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20 nop

0 100 200 300 400 500 600 700 800 900 1000
0

10

20 add

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Operations

0

10

20

N
u

m
b

e
r

o
f
S

te
p

s

leal

Figure 2.19: The depth of Spoiler leakage with respect to different instructions and
execution units.

Context switching. In this case, we are interested in tracking memory access in the
privileged kernel environment after a context switch. First, we fill the store buffer with
addresses with the same page offset and then execute a system call. We expect to observe
a delayed performance during the system call execution if a secret load address has
aliased with the stores. We utilize Spoiler to iterate over various virtual pages; thus,
some of the pages have more noticeable latency due to the 1MB aliasing.

We analyze multiple syscalls with various execution times. For instance, Figure 2.20
shows the execution time for mincore. In the first experiment (red/1 MB Conflict), we
fill the store buffer with addresses that have aliasing with a memory load operation in the
kernel code space. The 1MB aliasing delay with 7 steps suggests that we can track the
address of a kernel memory load by the knowledge of our arbitrary filled store addresses.
The blue (No Conflict) line shows the timing when there is no aliasing between the target
memory load and the attackers store. Surprisingly, only by filling the store buffer, the

– 62 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

system call executes much slower: the normal execution time for mincore should be
around 250 cycles (cyan/No Store). This proof of concept shows that Spoiler can leak
information from more privileged contexts; however, this is limited only to loads that
appear at the beginning of the next context.

0 50 100 150 200 250 300

Page Number

200

400

600

800

1000

1200

1400

C
y
c
le

1 MB Conflict

No Conflict

No Store

Figure 2.20: Execution time of mincore system call. When a kernel load address has
aliasing with the attacker’s stores (red/1MB Conflict), the step-wise delay will appear.
These timings are measured with Kernel Page Table Isolation disabled.

Spoiler on SGX (negative result). In this experiment, we try to combine Spoiler
with the CacheZoom [245] approach to creating a novel single-threaded side-channel
attack against SGX enclaves with a high temporal and spatial resolution (4-byte) [244].
We use SGX-STEP [351] to precisely interrupt every single instruction. Nemesis [352]
shows that the time to execute a context switch when an interrupt occurs depends on the
execution time of the currently running instruction. On our test platform, Core i7-8650U,
each context switch on an enclave takes about 12000 cycles to execute. If we fill the store
buffer with memory addresses that match the page offset of a load inside the enclave in
the interrupt handler, the context switch timing is increased to about 13500 cycles. While
we cannot observe any correlation between the matched 4 kB, or 1MB aliased addresses;
we see unexpected periodic downward peaks with similar step-wise behavior as Spoiler
(Figure 2.21).

We later reproduce a similar behavior by running Spoiler before an ioctl routine
that flushes the TLB on each call. Intel SGX also performs an implicit TLB flush during
each context switch. Thus, we can infer that the downward peaks occur due to the TLB
flush, especially since these peaks’ addresses do not have any address correlation with

– 63 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

the address of the load. This behavior suggests that the TLB flush operation itself is
affected by Spoiler and virtually eliminates the opportunity to observe any potential
correlation due to the speculative load. As a result, we can not use Spoiler to track
memory accesses inside an enclave.

200 300 400 500 600 700 800 900 1000

Page Number

800

1000

1200

1400

1600

1800

2000

C
y
c
le

Figure 2.21: The effect of Spoiler on TLB flush. The execution cycle always increases
for 4 kB aliased addresses, except for some of the virtual pages inside the store buffer
where we observe step-wise hills.

2.5 Summary

First, this chapter contributes, with MemJam, a new side-channel attack based on
false dependencies. For the first time, we discovered new aspects of this attack vector
and its capabilities. MemJam uses false read-after-write dependencies to slow down
accesses of the victim to a particular 4-byte memory block within a cache line. The
state-of-the-art timing side-channel analysis techniques can exploit the resulting latency
of otherwise constant-time implementations. We will show how to extract secrets from
modern cryptographic implementations by applying the attack to recent implementations
of 3-DES, AES, and SM4, as found in Intel IPP (§6.1). According to the available resources,
the leakage source for the MemJam attack is present in all Intel CPU families released in
the last ten years [107, 163], including newest generation CPUs. Our results also show
that MemJam is a viable intra-cache-line attack applicable to SGX enclaves. Before
MemJam, it might have seemed reasonable to design SGX enclaves under the paradigm
that constant cache line accesses result in leakage-free code. However, the increased

– 64 –

CHAPTER 2. UNCOVERING MICROARCHITECTURAL SIDE CHANNELS

intra-cache-line granularity of MemJam shows that only code with real constant-time
properties, i.e., constant execution flow, and constant memory accesses, can be expected
to have no remaining leakage on modern microarchitectures.

Next, we introduced Spoiler, a novel approach for gaining physical address informa-
tion by exploiting a new information leakage due to speculative execution. To exploit the
leakage, we used the speculative load behavior after jamming the store buffer. Spoiler
can be executed from user space and requires no special privileges. We exploited the
leakage to reveal information on the eight least significant physical page number bits,
critical for many microarchitectural attacks such as rowhammer and cache attacks. We
analyzed the causes of the discovered leakage in detail and showed how to exploit it to
extract physical address information.

Gaining partial knowledge of the physical address will make such attacks feasible in
browsers even though JavaScript-enabled attacks are challenging to realize in practice due
to the limited nature of the JavaScript environment. We showed the impact of Spoiler
to perform a rowhammer attack in a native user-level environment. Broadly put, the
leakage described in this paper will enable attackers to perform existing attacks more
efficiently or devise new attacks using the novel knowledge. For example, another area of
work that may benefit from Spoiler or MemJam, and in general, are transient execution
attacks like Meltdown [224]. We discuss this potential direction further in Section 3.1.

The source code for Spoiler is available on GitHub1.

1https://github.com/UzL-ITS/Spoiler

– 65 –

https://github.com/UzL-ITS/Spoiler

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

Chapter 3

Microarchitectural Data Leakage
via Automated Synthesis

We have contributed to a new class of transient execution attacks, called microarchitectural
data sampling (MDS). Based on the Meltdown attack technique, MDS enables adversaries
to leak secrets across security domains by collecting data from shared resources such as
data cache, fill buffers, and store buffers within the CPU core. These CPU resources may
temporarily hold data that belongs to other processes and privileged contexts, which the
CPU could falsely forward to the adversary’s memory accesses. Leaking data from these
resources results in a variety of real-world attacks and security implications. Section 3.1
provides an overview of meltdown attacks, and in general, attacks that target transient
execution.

Fuzzing is well known for finding vulnerabilities across trust boundaries [59, 64, 114,
190, 193, 210, 231, 235]. These approaches can usually rely on a well-defined interface,
e.g., system calls. Previous work also investigated the use of fuzzing for finding Spectre
gadgets [263]. With SpecFuzz, Oleksenko et al. [263] apply fuzzing techniques to find
Spectre-PHT (also known as Spectre Variant 1) gadgets in existing code. However, they
do not try to find new attack variants.

In Section 3.2, we perform an in-depth analysis of these Meltdown-style attacks based
on a fuzzing-based approach. we introduce an analysis tool, named Transynther,
which mutates the basic block of existing Meltdown variants to generate and evaluate
new Meltdown subvariants. We apply Transynther to analyze modern CPUs and
better understand the root cause of these attacks. As a result, we find new MDS variants
that only target specific memory operations, e.g., fast string copies. Based on our
findings, in Section 3.3, we propose a new attack technique, named Medusa, which can
leak data from implicit write-combining (WC) memory operations. In Section 3.4.2, we

– 66 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

discuss potential techniques to improve Transynther and generalize the root cause
for Meltdown attacks based on what we have learned in this chapter.

3.1 Transient-execution Attacks

As we have discussed in Section 2.1, modern CPUs employ out-of-order and speculative
execution to increase performance. With out-of-order execution, CPUs can execute
instructions further in the instruction stream as long as their dependencies are satisfied.
These optimizations reduce the times a CPU has to stall due to long-running instructions
significantly. Similarly, speculative execution enables a CPU to guess a conditional branch’s
outcome to continue executing the most likely path. If an instruction that was executed out
of order or speculatively was based on an incorrect prediction, it is simply not committed
to the architectural state. However, the instruction might have had a side effect on the
microarchitectural state, such as the cache. In this case, such an instruction is called a
transient instruction [62, 207, 224]. Meltdown [224] and Spectre [207] discover that such
optimization techniques cause a new class of vulnerabilities, called transient-execution
attacks. Transient-execution attacks exploit such transient instructions to leak data [62].
These attacks have since changed the perspective by introducing data leakage from the
CPU rather than spying on access patterns, as we discussed earlier in Chapter 2.

3.1.1 Spectre & Meltdown

Spectre. Speculative engines predict an operation’s outcome before its completion,
and they enable the execution of the following dependent instructions ahead of time.
As a result, the pipeline can maximize instruction-level parallelism and resource usage.
In rare cases where the prediction is wrong, the pipeline needs to be flushed, resulting
in performance penalties. However, this approach suffers from security weaknesses, in
which an adversary can fool the predictor and introduce arbitrary mispredictions. These
mispredictions execute illegal instructions that leave microarchitectural footprints in the
cache. Adversaries can collect these footprints through the cache side channel to steal
secrets e.g., using Flush+Reload [384].

Various variants of Spectre attacks frequently trick different types of branch predictors
into executing control paths that are illegal architecturally [68, 148, 203, 207, 211, 227]. If
the CPU cannot resolve a conditional branch’s condition, it speculates where the execution
continues. If this speculation was wrong, the CPU transiently executes instruction streams
that should not architecturally happen. In such a case, the CPU might access the
application data that should not be accessed (e.g., out-of-bounds values). Attackers can
encode the accessed data into the microarchitectural state if a suitable Spectre gadget

– 67 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

exists in the transiently executed instruction stream. Similarly to Meltdown (explained
shortly), a covert channel can bring the microarchitectural state to the architectural form,
leaking the secret [68, 148, 203, 207, 211, 227]. Spectre attacks on the branch prediction
unit [207, 227] imply that one can use side channels such as caches as a primitive for
more advanced attacks on speculative engines.

Meltdown. Meltdown attacks [61, 224, 297, 300, 339, 348, 356] exploit the heavily
optimized out-of-order load operations in which faulting memory loads still proceed with
stale or illegal data. In Meltdown attacks, the attacker leverages out-of-order execution
following a faulting load [224]. In contrast to Spectre, in which instruction sequences
transiently access secrets in the same security domain, Meltdown allows accessing secrets
across a security boundary. Transient execution of instructions after a fault, as exploited
by Lipp et al. [224] and Bulck et al. [348], can leak memory content of protected
environments. Similarly, transient behavior due to the lazy store/restore of the FPU
and SIMD registers can leak register contents from other contexts [322]. Using a covert
channel, such as Flush+Reload, the attacker can then bring the microarchitectural state
to the architectural form, ultimately leaking the secret.

3.1.2 Microarchitectural Data Sampling

Canella et al. [62] have systematically analyzed new variants of both Meltdown and
Spectre and propose a generic taxonomy to classify transient-execution attacks. They
based their classification on the cause of the transient-instruction sequence and the
exploited microarchitectural buffer. While this classification captures the cause and targets
of known variants in a structured way, it does not inform how specific attacks are triggered.
For most Meltdown attacks, there are multiple ways to trigger the leakage, e.g., some
variants seem to require TSX to suppress exceptions [366] while others can also leverage
signal handlers or misspeculation [61, 224, 300]. Meltdown-type attacks exploit complex
situations in the microarchitecture, which require so-called microcode assists. Microcode
assists are software routines in the CPU to handle cases that hardware logic cannot directly
address, e.g., specific faults, or updating bits in page-table entries.

We have contributed to a class of Meltdown-style attacks collectively referred to as
microarchitectural data sampling (MDS) [61, 300]. MDS also highlights the negative
impact of Intel hyperthreading on the security of modern CPUs [241, 297, 300, 322, 356,
366]. However, the performance gained by SMT proved indispensable outweighing any
data leakage across logical CPUs. Intel has promised fixes for such critical issues on all
future CPUs. While hardware patches have been deployed for data spilling attacks such
as MDS, side channels across logical CPUs remain a valid concern without foreseeable

– 68 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

hardware mitigations. These attacks can thrive in ever-expanding use cases of core
multitenancy such as the Platform as a Service (PaaS) cloud [345].

Address aliasing for data sampling. We mentioned that address aliasings introduce
new microarchitectural side channels (§2). We also have demonstrated that Spoiler can
improve other microarchitectural attacks like cache attack and rowhammer. Additionally,
we have seen in Spectre-STL [148] and our work on the Fallout attack [61] that these
logics for handling memory addresses relate to some of the transient execution attacks.
Spectre-STL relies on memory disambiguator to transiently bypass memory stores followed
by a memory load even if the load has an actual dependency on the store. As a
result, an attacker can leak the previous (stale) value of the load even if the prior store
meant to overwrite this leaked value. Unlike Spectre-STL, Fallout exploits faults and
microcode assists. In Fallout, we show that when a memory load causes a microcode
assist or an architectural exception and the target store operation have 4 k aliasing with
this faulty/assisted memory load, similar to MemJam, it may leak data from the store
buffer. Although this shows that address aliasings have a direct impact on Meltdown-style
attacks and particularly MDS, we have later verified that 4k aliasing is not always needed
for leaking data from store operations [247]. Before discovering the Fallout, we have
conducted the following experiment to test the possibility of leaking data from the store
buffer without an architectural fault or microcode assist and by just exploiting address
aliasing conditions described in MemJam and Spoiler. We

1. introduced either 4K aliasing (MemJam) or 1MB aliasing (Spoiler) between
several store operations with a known value and a load operation,

2. measured the time for the memory load operations and checked if the timings for
each condition matches with Figure 2.17,

3. similar to Meltdown, encoded the byte value of the memory load operation into a
cache line and scanned all the possible 256 possible caches lines using the Flush+
Reload technique.

Although intuitively, the load should consume falsely-forwarded data from the aliased
store, our experiments demonstrated negative results. We observed that the load always
encodes the correct value into the cache even when we observe the timing behavior
corresponding 4 k aliasing and 1MB aliasing. Therefore, leaking data from the aliased
store seemed not feasible without a faulty/assisted load. On the other hand, when we
change the load to experience a fault or assist, we observe the store buffer data leakage
described in Fallout. One explanation for this behavior is that the invalid forwarding due
to address aliasing, by default, may not provide a big-enough speculative window for the

– 69 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

following operations and the secondary memory load to encode the wrong value into the
cache covert channel, but the condition for such data leakage is suitable during a fault or
an assist.

Although our experiments at the time suggested that store buffer data leakage without
a fault or microcode assist was not possible on the tested Kaby Lake and Skylake
architectures, a recent security advisory refers to the fast forward store predictor [156].
We are not sure about the detail of this recently discovered vulnerability on Intel CPUs,
as there is no public description of the requirement for this new finding by Intel engineers.
However, this advisory indicates that leaking data from store operations solely abusing
predictors is feasible on some microarchitectures. Based on this report, we speculate
that either the experiment we have designed was insufficient to demonstrate predictor-
based store leakage, or this vulnerability is only applicable on more recent CPUs, i.e.,
microarchitectures and microcode versions that we have not tested. In conclusion, there
are apparent correlations between address aliasings and transient execution attacks. We
suggest the community to investigate such correlations further in open-source hardware.

Load value injection. Following MDS, we also have contributed another set of attacks
to the transient execution attack taxonomy. Load value injection (LVI) [349] demonstrates
an inverse-Meltdown attack, in which the adversary exploits microarchitectural buffers to
inject invalid data and control flow within the pipeline. When adversaries combine this filling
up the microarchitectural buffers with introducing intentional faults or microarchitectural
assists to a target memory load, they can construct gadget-based data exfiltration
techniques Similarly to Spectre.

In theory, LVI attacks impact several threat models, including cross-process, user-to-
kernel attacks, and attacks against TEEs like Intel SGX. However, in practice, due to
several timing constraints during an attack, they have only impacted workloads like Intel
SGX. SGX threat model considers the operating system as malicious. We will look into
the threat model of adversarial operating systems against SGX in Chapter 4.

3.2 Automatically Exploring Meltdown Attacks

This section proposes a systematic approach for evaluating data leakage caused by the
combination of microcode assists caused by a load with dependent operations. For
this purpose, we build Transynther1, a tool to automatically generate and test
the combination of known building blocks of Meltdown attacks with new triggers of

1Transynther tool and Medusa attack codes are available as open-source implementation on
GitHub: https://github.com/vernamlab/Medusa

– 70 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

microcode assists. Furthermore, we use fuzzing-type techniques to mutate, evolve, and
combine building blocks. Transynther can automatically evaluate whether the newly
synthesized code variants are a variant of a Meltdown attack by trying to leak known
values.

3.2.1 Introducing Transynther

In this section, we introduce Transynther, an automated approach for exploring
Meltdown-type attacks. Transynther uses fuzzing-based techniques to explore
Meltdown-type attacks systematically. The aim is to identify new variants of exist-
ing attacks which are, e.g., faster, less complicated, or are still exploitable mitigated, as
well as entirely novel Meltdown-type attacks.

Phase 1: Synthetisation Phase Phase 2:
Evaluation

Phase

Phase 3:
Classification Phase

ZombieLoad

Meltdown

Fallout

RIDL

Potential
Meltdown

Code
Sequence

Mutate

Random
Instructions

Leakage

Execute
Code

Send to
Classification

Performance
Counters

Evaluate

Manual
Analysis

Figure 3.1: Transynther phases: After mutating a new code sequence for a meltdown-
style attack, the code is evaluated. If there is a leakage detected, the sample is analyzed
further during the classification phase.

Transynther works in three phases, as outlined in Figure 3.1. In the first phase,
the synthetisation phase, Transynther uses building blocks of existing attacks to
mutate and combine them to potential new attacks. In the second phase, the evaluation
phase, Transynther executes the code from the synthetisation phase and evaluates
whether the code leads to data leakage. Finally, if the evaluation phase was successful,
the classification phase tries to classify the leakage source using performance counters
automatically.

3.2.2 Synthetisation Phase

The first phase is the synthetisation phase. In this phase, Transynther generates a
code snippet, which is a potential Meltdown-type attack. For this, Transynther relies

– 71 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

on building block from existing Meltdown-type attacks, including Meltdown [224], Zom-
bieLoad [300], RIDL [356], Foreshadow [348], Fallout [61], Meltdown-PK [62], Meltdown-
AVX [157], and Meltdown-RW [203].

The common pattern for all these attacks is as follows
1 Prepare the microarchitectural state (e.g., flushing, accessing, or storing data).
2 Load operation causing a fault (as Schwarz et al. [300], we consider microcode

assists as microarchitectural faults).
3 Dependent operation consuming the loaded data and encoding it in a microarchi-

tectural element.
As the encoding in 3 does not affect the leakage of a Meltdown-type attack [224, 339],

we always choose to encode the loaded value in the cache. This choice allows us to recover
the encoded values using a Flush+Reload covert channel quickly. This approach is used
for the majority of Meltdown-type attacks [61, 62, 203, 224, 300, 322, 348, 356, 366].
Initially, Transynther sets up and uses two pools in 2 . One pool contains possible
load operations and one contains possible load targets:

Load operations. Memory Loads are operations that load data from memory addresses
into registers. The simplest case of a load operation is a mov from a memory address to a
general-purpose register. Transynther relies on such movs for all possible sizes, from
8 to 64 bit. Additionally, possible load operations are also aligned and unaligned AVX
loads ({v}movaps/{v}movups) with a size of 128 and 256 bit.

Load targets. Load targets are virtual addresses with a systematic pattern of page-
table-entry bits, as discussed by Canella et al. [62]. As a starting point for this pool, we
rely on load targets with specific page-table bits, which Meltdown-type attacks already
used. This includes the user-accessible bit [224, 300], accessed bit [61, 300], present
bit [61, 348, 356, 366], writable bit [203], and protection key [62]. For a systematic
approach, we furthermore add load targets with page-table bits that have not been used
in successful Meltdown-type attacks so far, including the dirty bit, write-through bit,
uncachable bit, size bit, and non-executable bit. For all addresses, we define the content
of the corresponding physical page to evaluate the leakage. Finally, we also add addresses
that do not have a valid mapping to physical pages, such as non-canonical addresses
(addresses where the bits 48 to 63 are different to bit 47, e.g., 0x1234567812345000)
and NULL.

Furthermore, Transynther creates a victim that leaks specific data by repeatedly
loading and storing it to different virtual addresses and memory types. The victim can
either be a separate application running on the sibling hyperthread or running time-sliced
on the same hyperthread, e.g., using multithreading.

– 72 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

During synthesis, Transynther randomly chooses, mutates, and combines building
blocks for 1 and 2 . Transynther randomly chooses an operation (load, store, or
flush) and an address from the load-target pool to prepare the microarchitecture (1).
Then, it mutates the address by adding a random offset between 0B and 4 kB. This
mutation ensures that the address still maps to the same page in most cases because of
the page offset to a different cache line. Note that there is the case that a multi-byte
load might lead to a split-page load if the offset is too large. The split-page load is the
intended behavior, as split-page loads are also corner cases that might lead to leakage.
For 2 , Transynther randomly chooses a load operation and a load target. Again, we
randomly choose the added offset between 0B and 4 kB.

Additionally, Transynther randomly inserts independent operations between the
preparation of the microarchitecture (1) and the faulting load (2). Such operations
are, e.g., nops (no operations), ALU operations on unrelated registers, and additional
architectural faults. These instructions add a certain amount of timing differences and
increase the chance of triggering a race condition in the hardware. These operations may
increase the leakage rate for existing attacks, as shown in the published proof-of-concept
implementations for other transient-execution attacks [62, 224, 300].

Finally, Transynther adds another load operation, consuming the faulting load’s
value in 2 and encoding it into the cache. In line with previous work [62, 207, 224, 300,
322, 356], this operation simply accesses the nth page in a 256-page array, where n is
the byte value provided by the faulting load in 2 . Again, Transynther can randomly
insert independent operations between this step and the faulting load to vary the timing
between 2 and 3 .

3.2.3 Evaluation phase

In the second phase, the evaluation phase, Transynther evaluates whether the synthe-
sized code snippets from the synthetisation phase lead to data leakage. Transynther
uses an evaluation framework consisting of a preparation part which fills microarchitectural
buffers, the synthesized code snippet augmented with exception suppression, and a Flush+
Reload loop to recover the values encoded in 3 . The evaluation framework’s code runs in
an endless loop for a user-specified amount of time, e.g., 2 seconds. Then it compares the
values recovered using Flush+Reload to the known values from the preparation part. For
every evaluated snippet, Transynther logs the number of correct and wrong leaked
values. Snippets for which correct leakage is detected are candidate snippets used in
the classification phase. Snippets that do not leak correct values are discarded and not
further analyzed. In contrast to traditional application fuzzing, there is no feedback in our
approach, enabling Transynther to improve a snippet. The only feedback that the

– 73 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

CPU provides is whether the snippet leaks data or not. Moreover, as we try to discover
vulnerabilities, Transynther cannot use a CPU emulator [232].

3.2.4 Classification Phase

In the final phase, Transynther analyzes the leakage source using microarchitectural
buffer grooming, and performance counters.

Microarchitectural buffer grooming. The main idea of microarchitectural buffer
grooming is to bring these buffers into a known state. To achieve this, we fill every
microarchitectural buffer with known data that is unique for each buffer. Hence, if we
observe any leakage, we can infer the leakage source from the values. In the simplest
case, each buffer contains a repeated, single printable character. For example, by storing
several ‘S’-characters, we “fill” the store buffer with this character. If we then leak multiple
‘S’-characters, we can consider the store buffer as a potential leakage source. By having a
unique character per buffer, buffer grooming provides an elementary form of data taint
tracking [30]. In the case of data leakage, Transynther at least knows the data origin.

We only consider on-core data buffers for the buffer grooming, i.e., the L1 data
cache, store buffer, line-fill buffers, load buffer, load ports, and WC buffers. While buffer
grooming is straightforward for some buffers, e.g., the L1 cache, it is more difficult for
other buffers, e.g., the line-fill buffer. Fortunately, Intel provides software sequences for
mitigating some of the MDS attacks. These software sequences are designed to zero-out
the data in all microarchitectural data buffers [157], i.e., it sets the values in all buffers to
zero.

Listing 1 shows the software sequence used to zero-out the buffers on Skylake and
newer microarchitectures. In Lines 3 to 4, the load ports are zeroed out. Then, 12 cache
lines are flushed (Line 6) to ensure that 12 of the subsequent writes in Line 13 have to
go through the 12 line-fill-buffer entries [300]. Using rep stosb also ensures that the
WC-buffer entries of the line-fill buffer are also used and thus zeroed-out. For the buffer
grooming, we can rely on an adapted software sequence. Instead of writing zero to all
buffers, we store a repeated, unique character to every buffer. This procedure is as simple
as, e.g., letting zero_ptr point to a memory content not containing 0 but ‘L’-characters
to ensure that load port is filled with repeating ‘L’s. Moreover, we can replace the rep
stosb with a normal mov in a loop to distinguish WC buffers from general line-fill buffers.

The obvious limitation is that Transynther cannot track the actual flow of the data
in hardware. For example, the CPU may have already written the store buffer’s data to
the L1 cache. Therefore the data may also leak from the L1 cache. Still, Transynther

– 74 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

Listing 1 Software sequence to overwrite all microarchitectural buffers for Skylake and
newer microarchitectures [157].

1 mov %[scratch], %rdi
2 lfence
3 orpd (%[zero_ptr]), %xmm0
4 orpd (%[zero_ptr]), %xmm0
5 xorl %eax, %eax
6 1: clflushopt 5376(%[scratch],%rax,8)
7 addl $8, %eax
8 cmpl $8∗12, %eax
9 jb 1b

10 sfence
11 movl $6144, %ecx
12 xorl %eax, %eax
13 rep stosb
14 mfence

Counter Description

MEM_LOAD_RETIRED.FB_HIT Data loaded from a line-fill-buffer entry.
MEM_LOAD_RETIRED.L1_HIT Data loaded from the L1 data cache.
MEM_LOAD_RETIRED.L2_HIT Data loaded from the L2 data cache.
L1D_PEND_MISS.FB_FULL Data is neither in L1 nor in fill buffer.
LD_BLOCKS.STORE_FORWARD Store buffer blocks load.
LD_BLOCKS_PARTIAL.ADDRESS_ALIAS Load blocked by partial address match.
MEM_INST_RETIRED.SPLIT_LOADS Data spans across two cache lines.

Table 3.1: The performance counters used in Transynther to identify the active
microarchitectural elements.

assumes that the data leakage is from the store buffer. To reduce the number of false
classifications, we additionally rely on hardware performance counters.

Performance counters. For additional information on the leakage source, we augment
Transynther to record hardware performance counters while leaking values. Thus,
in addition to the source of leaked values, we also observe the active microarchitectural
elements.

Table 3.1 shows the performance counters we used. Some of these performance
counters can identify leakage sources successfully [187, 300]. They cover multiple mi-
croarchitectural buffers, such as the line-fill buffer, L1 and L2 data cache, and the store
buffer. Figure 3.2 shows the heatmap for the correlation between the number of leaked

– 75 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

bytes and different performance counter events related to various variants of Meltdown
attacks. The darker the color is, there is more relative correlation.

00
-le

ak
ag
e

dt
lb
_
lo
ad
_
m
iss

es
.m

iss
_
ca
us
es
_
a_

w
al
k

dt
lb
_
st
or
e_

m
iss

es
.m

iss
_
ca
us
es
_
a_

w
al
k

fr
on

te
nd

_
re
tir
ed
.d
sb
_
m
iss

fr
on

te
nd

_
re
tir
ed
.l1

i_
m
iss

fr
on

te
nd

_
re
tir
ed
.l2

_
m
iss

l1
d.
re
pl
ac
em

en
t

l1
d_

pe
nd

_
m
iss

.fb
_
fu
ll

l1
d_

pe
nd

_
m
iss

.p
en
di
ng

l1
d_

pe
nd

_
m
iss

.p
en
di
ng

_
cy
cl
es

l1
d_

pe
nd

_
m
iss

.p
en
di
ng

_
cy
cl
es
_
an
y

l2
_
lin
es
_
in
.a
ll

l2
_
lin
es
_
ou

t.
no

n_
sil
en
t

l2
_
lin
es
_
ou

t.
sil
en
t

l2
_
lin
es
_
ou

t.
us
el
es
s_

hw
pf

l2
_
lin
es
_
ou

t.
us
el
es
s_

pr
ef

l2
_
rq
st
s.
al
l_

co
de
_
rd

l2
_
rq
st
s.
al
l_

de
m
an
d_

da
ta
_
rd

l2
_
rq
st
s.
al
l_

de
m
an
d_

m
iss

l2
_
rq
st
s.
al
l_

de
m
an
d_

re
fe
re
nc
es

l2
_
rq
st
s.
al
l_

pf
l2
_
rq
st
s.
al
l_

rf
o

l2
_
rq
st
s.
co
de
_
rd
_
hi
t

l2
_
rq
st
s.
co
de
_
rd
_
m
iss

l2
_
rq
st
s.
de
m
an
d_

da
ta
_
rd
_
hi
t

l2
_
rq
st
s.
de
m
an
d_

da
ta
_
rd
_
m
iss

l2
_
rq
st
s.
m
iss

l2
_
rq
st
s.
pf
_
hi
t

l2
_
rq
st
s.
pf
_
m
iss

l2
_
rq
st
s.
re
fe
re
nc
es

l2
_
rq
st
s.
rf
o_

hi
t

l2
_
rq
st
s.
rf
o_

m
iss

l2
_
tr
an
s.
l2
_
w
b

lo
ng

es
t_

la
t_

ca
ch
e.
m
iss

lo
ng

es
t_

la
t_

ca
ch
e.
re
fe
re
nc
e

m
ac
hi
ne
_
cl
ea
rs
.c
ou

nt
m
ac
hi
ne
_
cl
ea
rs
.s
m
c

m
em

_
in
st
_
re
tir
ed
.a
ll_

lo
ad
s

m
em

_
in
st
_
re
tir
ed
.a
ll_

st
or
es

m
em

_
in
st
_
re
tir
ed
.lo

ck
_
lo
ad
s

m
em

_
in
st
_
re
tir
ed
.s
pl
it_

lo
ad
s

m
em

_
in
st
_
re
tir
ed
.s
pl
it_

st
or
es

m
em

_
lo
ad
_
l3
_
hi
t_

re
tir
ed
.x
sn
p_

hi
t

m
em

_
lo
ad
_
l3
_
hi
t_

re
tir
ed
.x
sn
p_

hi
tm

m
em

_
lo
ad
_
l3
_
hi
t_

re
tir
ed
.x
sn
p_

no
ne

m
em

_
lo
ad
_
re
tir
ed
.fb

_
hi
t

m
em

_
lo
ad
_
re
tir
ed
.l1

_
hi
t

m
em

_
lo
ad
_
re
tir
ed
.l1

_
m
iss

m
em

_
lo
ad
_
re
tir
ed
.l2

_
hi
t

m
em

_
lo
ad
_
re
tir
ed
.l2

_
m
iss

m
em

_
lo
ad
_
re
tir
ed
.l3

_
hi
t

m
em

_
lo
ad
_
re
tir
ed
.l3

_
m
iss

ot
he
r_

as
sis

ts
.a
ny

re
so
ur
ce
_
st
al
ls.
an
y

re
so
ur
ce
_
st
al
ls.
sb

ro
b_

m
isc

_
ev
en
ts
.p
au
se
_
in
st

tlb
_
flu

sh
.s
tlb

_
an
y

tx
_
m
em

.a
bo

rt
_
co
nfl

ic
t

medusa-v1-addresscan-fh-victim-repmov.perf.csv

medusa-v1-addresscan-victim-fr-mfence.perf.csv

medusa-v1-addresscan-victim-fr-nofence.perf.csv

medusa-v1-addresscan-victim-repmov.perf.csv

medusa-v2-unalignedSTL-fh-victim-repmov.perf.csv

medusa-v2-unalignedSTL-victim-mfence.perf.csv

medusa-v2-unalignedSTL-victim-nofence.perf.csv

medusa-v2-unalignedSTL-victim-repmov.perf.csv

medusa-v3-shadowREPMOV-fh-victim-repmov.perf.csv

medusa-v3-shadowREPMOV-victim-fr-mfence.perf.csv

medusa-v3-shadowREPMOV-victim-fr-nofence.perf.csv

medusa-v3-shadowREPMOV-victim-repmov.perf.csv

ridl-victim-fr-mfence.perf.csv

ridl-victim-fr-nofence.perf.csv

ridl-victim-repmov.perf.csv

zombieload-v1-victim-fr-mfence.perf.csv

zombieload-v1-victim-fr-nofence.perf.csv

zombieload-v1-victim-repmov.perf.csv

zombieload-v2-taa-victim-fr-mfence.perf.csv

zombieload-v2-taa-victim-fr-nofence.perf.csv

zombieload-v2-taa-victim-repmov.perf.csv

zombieload-v3-victim-fr-mfence.perf.csv

zombieload-v3-victim-fr-nofence.perf.csv

zombieload-v3-victim-repmov.perf.csv

Figure 3.2: Heatmap of performance counters

Transynther correlates the performance-counter values with the number of leaked
bytes using the Pearson correlation coefficient. A high positive correlation between the
number of leaked bytes and the events for a microarchitectural element indicates that
this element is involved in the leakage.

With microarchitectural buffer grooming and the correlation coefficient from the
performance counters, Transynther can provide an educated guess of the leakage
source.

3.2.5 Transynther Results

In our first set of experiments on Intel CPUs, we ran Transynther for about 46 500
test cases distributed on the three Intel Core i7-7700 (Kaby Lake), i7-8650U (Kaby Lake
R), and i9-9900K (Coffee Lake) CPUs. We ran each test case for 2 s, totaling about
26 CPU hours. Transynther generated 5100 code snippets, which showed transient
leakage. Based on the classification and subsequent manual analysis, we filtered the

– 76 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

CPU µarch

Intel Core i7-7700 Kaby Lake
Intel Core i7-8650U Kaby Lake R
Intel Core i9-9900K Coffee Lake
AMD Ryzen 5 2500U Ryzen 5

Table 3.2: Tested Environments.

generated code snippet to 100 interesting cases with a unique code and leakage pattern.
We identified multiple classes of leaking code sequences.

We also ran some tests on an AMD Ryzen 5 2500U and show that while there is
no data leakage on AMD, AMD is not by-design immune to Meltdown-type attacks. In
our second experiment, we ran Transynther for about 10 000 test cases on an AMD
machine. Similarly, we ran each test case for 2 s, totaling about 5 CPU hours. We present
our findings in Intel CPUs, followed by our conclusions regarding AMD CPUs.

Split cache access. Transynther reproduced various variants of split cache access
that lead to MLPDS. Split accesses refer to memory accesses that span over two cache
lines and are handled differently from normal loads accessing a single cache line. In the
generated proof of concepts, we can observe that when split access is suffering a faulty
load, it directly leaks the data that is loaded by the sibling thread (1). Split access works
for page faults (user-accessible and present) and microcode assists caused by setting the
accessed bit. We only saw MLPDS leakage on Kaby Lake and Kaby Lake R but not
on the Coffee Lake microarchitecture. Another observation is that MLPDS with split
access works much faster when a page fault is caused by accessing a non-present page
before the target faulty load. Unlike non-canonical addresses, Intel microarchitectures
treat the zero address as non-present pages. In contrast, a page fault caused by accessing
a non-user-accessible page does not increase the leakage rate. Vector move instructions
can also trigger split accesses (2), which lead to the same leakage. In this case, a 16-,
32- or 64-byte vector move instruction has a higher chance of being unaligned.

Vector move. A faulting vector load instruction with correct alignment without crossing
a cache line can leak data (3). Vector load instructions can enforce alignment e.g.,
movaps or be alignment-agnostic e.g., movups. A correct alignment means that either
the load’s address is aligned or the memory load is an alignment-agnostic instruction.
Depending on which part of the vector is loaded, it can leak different bytes of the implicitly
write-combined data. Prior faults may also affect which part of the data is leaked. We

– 77 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

Case Preparation Store Load Name

1 (access , random in-
structions)

- + / / MLPDS

2 (access , random in-
structions)

- AVX + / / MLPDS

3 (access , random in-
structions)

- AVX + / / Medusa

4 (access , random in-
structions)

- AVX + / / / / Medusa

5 - store (to load) / / / S2L
6 (rep mov + store,

store + fence + load)
store (to load) / / / -

7 - store (4k aliasing) + / / / / / MSBDS
8 - store (4k aliasing, to load) + / / / / AVX + / / / / MSBDS,

S2L
9 (Sibling on/off) store (random address) + / MSBDS
10 (Sibling on/off + clflush

(store address))
store (Cache Offset of Load) + / MSBDS

11 (Sibling on/off + rep
mov (to Load))

store (to Load) AVX + / / / / Medusa,
MLPDS

12 - Store (Unaligned to Load) / / Medusa
13 (random instructions) AVX Store (to Load) Medusa,

MLPDS,
MSBDS

14 - random fill stores MSBDS

Non-canonical Address Fault Non-present Page Fault Supervisor Protection Fault
AVX Alignment Fault Access-bit Assist Split-Cache Access Assist Access without Fault/Assist

Table 3.3: Leakage variants discovered by Transynther.

hypothesize that this is due to the different times it takes to handle the exception for
the fast string copy operation. Faulting vector load operations also show fast leakage
for a non-canonical address, whereas a simple non-canonical fault requires additional
memory grooming to work. We did not observe leakage for a page fault in our setup of
microarchitectural buffer grooming, in contrast, to split cache accesses. Note that while
Intel refers to all these cases as MLPDS [157], we distinguish the specific case of leaking
from implicit WC. On the other hand, a vector move with split access leaks any load
operation on the sibling thread (2).

AVX alignment fault. When one uses an aligned version of a vector instruction, the
provided address should be aligned with the memory request’s size. Otherwise, the CPU
throws a general-purpose exception. Transynther created many variants of alignment-
enforcing vector loads combined with unaligned addresses, leading to a general-protection
exception. The results indicate that the alignment exception is prioritized in the pipeline
as it does not depend on the address type (4). In contrast to 3 , 4 also works with
page faults and even valid addresses, not causing any faults. As we observed in other
cases as well, grooming the pipeline by introducing early exceptions or adding random
instructions of the pipeline may improve the leakage rate.

– 78 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

Store-to-leak. Transynther generated various variants of Store-to-leak [297]. Tran-
synther showed that during a TSX transaction, Store-to-leak [62] works on all addresses
except for non-present addresses (5). Accesses to non-accessed pages abort the TSX
transaction, showing TAA [175].

Transynther also generated a case that when the CPU executes an unrelated
rep mov instruction before the store, Store-to-leak does not forward the data anymore.
We further noticed that adding a fence instruction between the store and load prevents
Store-to-leak. For Fallout [61], it has no effect (6).

4K-Aliasing forwarding (Fallout). As shown in Fallout [61], store-to-load forwarding
can forward the wrong data when the least-significant 12 bits of the store and load address
match [244]. Transynther reproduced combinations of addresses that can forward
when the store and load are a multiple of 4 kB apart (7). We verified that false forwarding
on 4 kB aliasing only works with supervisor fault and access-bit assist. Transynther
showed that the forwarding is agnostic to the store’s address, i.e., any store regardless of
whether the target is a valid or invalid address is forwarded as far as it meets the 4 kB

aliasing condition.

Store-to-load forwarding and AVX. In our experiments, both Fallout and Store-to-
leak [61] also work with aligned AVX loads. However, when the load suffers a vector
alignment general-protection exception, Store-to-leak and Fallout both ignore the address
types for both stores and loads (8).

Store forwarding and faulting stores. Medusa discovered that faulting stores
could be forwarded independently of address aliasing and matching. In 9 , we perform a
store to non-present addresses causing a page fault, e.g., address null. When the sibling
thread is turned on and off, the store is forwarded to the faulting load without any aliasing.
Interestingly, we can still choose which byte of the store to leak by indexing into different
offsets. For instance, if the store’s size is 8B, we can choose which byte to leak by
changing the last 3 bits of the faulty store or load. This variant of MSBDS only works
with supervisor fault and non-canonical address exceptions. Also, if we perform multiple
faulty stores, we leak more often from the later stores.

According to Intel, a sibling thread can leak stores from another thread when the
other thread goes to sleep and back [157]. Potentially, this variant can create a basis for
leaking stale data from a sibling store. Besides, this can potentially increase the attack
surface for the exploitation of LVI attacks [349]. As in some LVI variants, attackers who
control the store address may freely perform stores to faulty pages to inject data to the
store buffer.

– 79 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

Store forwarding and cache Aliasing. Transynther also created code sequences
that leak the store data based on aliasing of only the cache offset. This finding is in
contrast to the current understanding that only full address matching or 4 kB aliasing
forwards the data (10).

Store forwarding and stale load forwarding. As we mentioned in various cases,
grooming the pipeline may affect which data will be forwarded/leaked first. For instance,
Medusa generated many proof of concepts that shows we can leak different buffers and
values with the vector alignment exception. We only mention one example here: one can
turn Store-to-Leak into a case where both the store and a value from the sibling thread
(MLPDS or Medusa) are leaked. In this case, we prepared the architecture with a rep
mov instruction with the destination address being the faulty load address. When the
sibling thread is switching on/off, we see that both the forwarded store and the values
loaded by the sibling thread are leaked (11).

In this proof-of-concept, rep mov handled by a specific microcode assist [163] is
causing the value from a sibling thread to be loaded instead of the expected Store
forwarding, i.e., the value stored previously. We investigated the effect of rep mov and
found out that we can use it to create a new variant of leakage from the WC buffer
(Section 3.3.2).

Unaligned store forwarding. We also found using Transynther that unaligned
store forwardings can leak values from a sibling thread. This variant is a particular case
of store-forward in which the store and load overlap partially, but it can not forward the
actual data bytes on the store to the load operation. We investigate this case further and
use it as a new attack variant for Medusa in Section 3.3.2 (12).

Non-canonical addresses. Non-canonical addresses are handled differently from reg-
ular memory addresses on Intel CPUs [335]. During an early stage of address decoding,
the CPU converts a 64-bit address to a compacted form, as the actual supported address
space is not 64-bit. If the address does not follow the canonical form [177], the CPU will
throw a general-purpose exception during this conversion. We verified that no page table
walk for non-canonical addresses and an early mechanism throw an exception matching
the patent description.

Medusa observed various cases where the combination of non-canonical address
faults will leak data with different behavior. For instance, store-to-leak on a no-canonical
address may not always leak the value of the store. Instead, depending on how grooming
affects the architecture, we see the store and loads from the sibling thread are leaked
(13). Another interesting observation is that sometimes a non-canonical fault would

– 80 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

always leak the last store, disregarding any aliasing form. In this case, we have filled the
store buffer with various valid stores, and depending on what state the store buffer will be
(a different set of random stores), there are cases where the CPU always forwards the last
store to the load (14).

Exception bypass (AMD). One of the requirements for Meltdown-type attacks is to
bypass exceptions in an out-of-order fashion. The results from Transynther suggest
that the AMD Zen microarchitecture might potentially be vulnerable to Meltdown-type
attacks. We found that various exceptions, such as division by zero, an aligned vector
store general-purpose exception, and a faulting store to a supervisor address, do not
stop the out-of-order execution. Instead, either the store to a valid (non-faulty) load
after the fault was complete or the proper load operations leak the content with valid
permission. In line with the AMD whitepaper [20], their CPU may bypass some of the
exceptions speculatively. Hence, Meltdown’s requirement is also present on AMD CPUs,
the forwarding of data from faulting instructions. CPUs immune to Meltdown-type attacks
have to ensure that operations depending on a faulting instruction cannot get the transient
data, e.g., by stalling. While AMD provides this insurance for page faults, they do not
guarantee this property for other faulting instructions, e.g., General Protection Memory
Access (cf. AMD whitepaper [20], page 5). While we could not show data leakage that
violates a security guarantee, e.g., leakage from the kernel, AMD is not by-design immune
to Meltdown-type attacks.

Vector move alignment fault (AMD). We also observed that the AMD CPUs
handle faulty vector alignment exceptions differently than other faulty loads. In particular,
these exceptions do not block the data flow, and we observe that the pipeline will still
speculatively consume the data despite the exception. We observe that the memory
page’s value or the recently written value to the memory page will be leaked using a
Meltdown-style gadget. Again, this does not violate any architectural data flow, but it
shows that computation over transient data that was not supposed to be available is
feasible from a microarchitectural standpoint.

3.3 Medusa: Pre-filtering Data

In addition to reproducing known attacks and gaining a better understanding of the root
cause, Transynther also discovered new variations of MDS variants, which we refer to
as Medusa. Medusa provides more in-depth insight into how Intel microarchitectures
implement the memory subsystem. Medusa specifically targets data values transferred

– 81 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

via the common data bus but are not normal data loads. In addition to AVX2 loads,
Medusa has the unique property to observe the inner workings of implicit write combining
(WC) used by the CPU, e.g., fast string operations like rep mov. For WC, the CPU uses
a part of the line-fill buffer to combine multiple stores to the same cache line to increase
the throughput. In contrast to ZombieLoad [300] and RIDL [356], which leak arbitrary
data from the line-fill buffer, Medusa specifically targets data transfers caused by WC.
WC memory semantics are explicitly used by memory marked as WC, and implicitly by
the fast string operations, i.e., rep mov and rep sto.

With Medusa, the leakage is extremely targeted and noise-free, as it only leaks
specific memory operations. Thus, while the property to only leak data from WC sounds
like a limitation, it is advantageous over previous data-sampling attacks. Data-sampling
attacks such as ZombieLoad [300] or RIDL [356] required extensive post processing to
find the targeted data within the leaked data, Medusa does not consider such large
amounts of unrelated data in the first place. This attack primitive is incredibly essential,
as ZombieLoad and RIDL, in practice, leaks too many unrelated data when applied to
applications that perform lots of operations. For instance, in Section 6.2, our case study
of attacking RSA, the computation of RSA, including loading the key from the disk and
performing signing operations, consists of thousands of load operations. Attackers are
not generally interested in leaking all of these load operations.

In this section, we further evaluate a novel ZombieLoad variant, which we discovered
using Transynther. First, we show that Medusa allows prefiltering leaked values.
Medusa only leaks values used in implicit WC by exploiting the WC buffer’s microarchi-
tectural implementation, a unique entry inside the line-fill buffer. Second, we show three
different variants of Medusa, which each have unique properties. Finally, we analyze
potential attack targets for Medusa based on how real-world software uses implicit WC.

3.3.1 Leakage Analysis

To evaluate the practicality of Medusa, we first analyze the leakage of Medusa. This
analysis includes the leakage source, the leakage pattern, how much control an attacker
has over the leakage, and how much noise is in the leaked data. We first reduced the
generated snippet, i.e., we removed instructions as long as the leakage was still visible.

Leakage source. For the leakage source, Transynther already provides an educated
guess that the leakage source is the fill buffer. For Medusa, Transynther reports
a Pearson coefficient of rp = 0.99 for the fill buffer, while the correlation for the other
performance counters is not statistically significant. However, the only leaked value is the

– 82 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

With memory barrier Without memory barrier >128-bit data
load store load store load store

RIDL RIDL RIDL (ST) RIDL (ST) - -
- Fallout (ST) - Fallout (ST) - Medusa / Fallout

(ST)
ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad Medusa / Zom-

bieLoad
TAA ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad
PTE inversion - Fallout (CL, ST) - Fallout (CL, ST) - Fallout (CL, ST)

ZombieLoad ZombieLoad / Fall-
out (ST)

ZombieLoad ZombieLoad / Fall-
out (ST)

ZombieLoad ZombieLoad / Fall-
out (ST)

Attack(s) ZombieLoad
/ RIDL

ZombieLoad /
RIDL / Fallout
(ST)

ZombieLoad
/ RIDL (ST)

ZombieLoad /
RIDL (ST) /
Fallout (ST)

ZombieLoad Medusa / Zom-
bieLoad / Fallout
(ST)

Table 3.4: A comparison of MDS attacks in various variants and on different targets.

character written with rep stosb. Hence, in contrast to ZombieLoad [300], Medusa
can only leak from a part of the line-fill buffer.

We additionally verify that using the publicly available proof-of-concept for ZombieLoad.
Using this victim, we do not see any leakage when using Medusa, while we see a
substantial leakage when using the ZombieLoad attack. We also used the public proof-of-
concept for RIDL [356]. Interestingly, RIDL only works when reading data after a flush
and a memory barrier. If either the flush or the memory barrier (i.e., cpuid or mfence)
is missing, we do not get any leakage.

In Section 3.3.1, we compare different victims and whether any variant of an MDS
attack (ZombieLoad, RIDL, Fallout) or Medusa can leak data from the victims. While
larger data than 128 bits, e.g., rep mov, can also be leaked with ZombieLoad (same and
cross hyperthread) or Fallout (same hyperthread), Medusa only reveals data larger than
128 bits. Hence, while Medusa does not exploit any new data source, it targets precisely
one type of victim, and there is no unrelated data from other processes.

WC and fill buffer. According to Intel, their microarchitectures use the line-fill buffer
as WC buffers [173]. Thus, officially, WC can use ten line-fill-buffer entries [177].
Schwarz et al. [300] experimentally verified this for pre-Skylake microarchitectures but
detected 12 line-fill-buffer entries since Skylake. We devised several experiments to analyze
the line-fill buffer’s WC-behavior for all memory types supported on x86_64.

While there is an explicit WC memory type, specific instructions always use WC
independent of the underlying memory type, e.g., non-temporal stores. Depending on the
CPU, Intel also documents that non-temporal loads (MOVNTDQA) may reduce the number
of cache evictions by leveraging the WC buffer [177]. Recent Intel CPUs support fast-string
operations via the rep mov and rep sto instructions [163, 177]. These instructions

– 83 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

do not guarantee any order of the written data [177]. Hence, they can employ WC to
reduce the number of write requests sent on the memory bus. We verified that with
Medusa, we could leak the values both for explicit WC, i.e., memory marked as WC, and
implicit WC, i.e., MOVNTDQA, rep mov, and rep sto. Hence, Medusa has the unique
property among all MDS attacks that instruction types filter the leakage, i.e., the amount
of unrelated data is significantly less than in other attacks.

Leakage pattern. Figure 3.3 shows the leakage pattern for Medusa when copying a
256-byte buffer in the victim application using rep mov over the time of 10 s. We can see
that while it is infeasible to leak all offsets in a 256-byte window with the same frequency,
all offsets can be leaked.

0 20 40 60 80 100 120 140 160 180 200 220 240

101

102

103

Byte offset

C
ou

nt

Figure 3.3: Leaking values with Medusa when copying a 256-byte buffer using rep mov
shows an interesting pattern. While one can leak all bytes, certain offsets in the buffer
have a much higher probability of leaking.

For the victim, we use a de Bruijn sequence of order three on an alphabet of size 26,
i.e., B(26, 3), to groom the WC buffer (cf. Section 3.2.4). We continuously write this
sequence to a dummy location using rep mov. The victim is running on the sibling CPU
thread.

For the attacker, we always leak 3 bytes at a time by encoding every byte into a
different array of 256 pages. As it is possible to compute on the full leaked values in the
transient domain [300], we can reveal a 32-bit value, split it, and encode it to different
arrays. Then we can match the recovered 3-byte value to the de Bruijn sequence used
in the victim application. As every 3-byte value within the de Bruijn sequence is unique,
this method allows us to analyze the leaked values pattern. Notably, we can always see
strides of values that often occur in the leaked data, followed by strides that only happen
rarely. Especially for the beginning of the buffer, the probability for leaking the first 32
bytes (p =67%, n =10 000) is significantly higher than for leaking the second 32 bytes
(p =33%, n =10 000). We assume that the split of 32B is due to the 32B data-bus size
on our test machine (i7-8650U). Hence, to transmit a WC-buffer entry over the shared
data bus, both halves of the entry have to be transferred separately, and Medusa leaks

– 84 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

either the first or second half. Data after the first cache line shows a different pattern.
We can always see 16B strides of values that occur often in the leaked data, followed by
16B strides, which only happen rarely. Interestingly, this pattern does neither correlate
with the bus size nor the WC buffer size. The leakage rate also increases after the first
64 bytes. At the time of writing, we do not know how to further analyze these effects;
hence, we leave investigating this effect for future work.

Entry size for WC buffer. In the first experiment, we determine the size of an entry
in the WC buffer. The basic idea is to detect that there are no available WC-buffer entries
anymore. For this, we rely on the L1D_PEND_MISS.FB_FULL performance counter.

We execute an increasing number of non-temporal linear store instructions with a
defined stride size in the experiment. Non-temporal stores ensure that the CPU uses
WC for the stores. When the stride size exceeds the size of a WC-buffer entry, the CPU
must allocate a new WC-buffer entry for every store. Hence, if we see that the WC
buffer becomes a bottleneck, and the number of executed stores matches the number of
fill-buffer entries, we know that the stride size equals the WC-buffer-entry size.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

Stores

La
te
nc
y

[c
yc
le
s]

1-byte stride
8-byte stride
32-byte stride
64-byte stride

Figure 3.4: The number of cycles no fill-buffer entry is available. As there are 12 fill-buffer
entries since Skylake [300] which are used as WC-buffer entries [173], the WC-buffer-entry
has to be 64 bytes, i.e., one cache line.

Figure 3.4 shows the results of this experiment. The performance counter reports
the WC buffers’ unavailability only at a stride size of 64 bytes and more than 12 stores.
For smaller stride sizes, the WC buffer can combine the stores such that not every store
requires its separate buffer entry.

3.3.2 Exploitation Methodology

In the following, we describe three different variants that allow to trigger Medusa.

Variant I: Cache indexing. In the first variant of Medusa, we rely on faulting loads
located inside a cache line. Variant I exploits faulting loads on addresses that point inside

– 85 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

a cache line (cf. Figure 3.5) to leak values from the WC buffer. The setup is similar to
all Meltdown-type attacks, with a faulting load that transiently encodes the loaded data
into a microarchitectural element. In contrast to existing attacks, the type of fault is not
essential, but the faulting address’s cache-line offset is. We verified Variant I with both
non-canonical and supervisor addresses. On our test machine, an i7-8650U, the cache-line
offset, i.e., the least-significant 6 bits of the address, has to be at least 8, which is the
maximum size for normal memory loads. However, the highest leakage rates are for offsets
between 16 and 31. The common data bus has a width of 32 bytes. However, normal
loads can only use 8, and AVX loads 16 bytes (128 bits). Consequently, offsets 16 to 31
are rarely used, as only AVX2 (256 bits) uses the shared data bus’s full width. However,
as WC’s goal is to increase the throughput, implicit WC operations also try to leverage
the entire common data bus. Hence, by using address offsets that index the upper half
of the common data bus, Variant I leaks stale values of recent WC operations, e.g., rep
mov, as well as AVX2 memory loads.

0 10 20 30 40 50 60
0

2

4

6

Cache-line offset [B]

Le
ak
ed

[%
]

Figure 3.5: The cache-line offsets and how they contribute to the leakage for Medusa
Variant I.

While at first, Variant I appears to be similar to MLPDS [157], ZombieLoad [300], or
Fallout [61], it has distinctive properties. First, MLPDS requires either a faulting load
spanning a cache line (64B) or a faulting vector load that is larger than 64 bits [157].
For Variant I, neither of these requirements is necessary. In contrast, Variant I only works
if the load is within one cache line. Loads spanning over two cache lines do not show
data leakage (cf. Figure 3.5). Second, Variant I leaks data from the same CPU thread
and the sibling thread, which is different from Fallout [61]. The leakage is limited to data
stored using either rep mov, rep sto, or AVX2. In contrast to ZombieLoad or Fallout,
Variant I of Medusa is agnostic to other data passing the store buffer or the fill buffer,
since they never use the upper half of the shared data bus.

Variant II: Unaligned store-to-load forwarding. Faulting or assisting load that
meets the "Unaligned Store-to-Load Forwarding" condition (similar to MSBDS) consis-
tently leaks stale data. We have previously observed this behavior even across SMT.

– 86 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

WB WC WT UC

REP MOV 483B/s, 99% 299B/s, 97% 122B/s, 43% 0B/s, 0%
REP STO 656B/s, 99% 1960B/s, 57% 511B/s, 49% 471B/s, 73%
NT MOV 0.1B/s, 99% 0.1B/s, 97% 0.1B/s, 43% 0.1B/s, 73%

Table 3.5: Variant II performance for various memory types and victim operations.

Note that this is different from MSBDS, as MSBDS does not work across sibling threads.
Here, we can leak the WC buffer data by creating an unaligned store-to-load forwarding
condition on faulting or assisting load. Further, an attacker can control to leak which
bytes of the WC buffer by combining various load sizes and the small store’s offset. In our
experiments, we managed to control the last 16 bytes of a WC buffer line by combining a
32-byte read ’ymmX’ and iterating over various values for the store offset.

Variant III: Shadow rep mov. Variant III of Medusa exploits a microcode assist
caused by a rep mov followed by a dependent faulting load. The rep mov instruction
copies a single dummy byte to a destination address, which causes a fault, e.g., a non-
canonical address. A subsequent load from the destination address leaks data from a
stale or concurrent rep mov. The rep mov can either be on the same logical core before
running Medusa, which leaks stale data of the previous rep mov. This leakage also
works across privilege boundaries, i.e., the stale rep mov data can also be from the kernel.
Moreover, this attack also works for a concurrent rep mov on the sibling logical core
across privilege boundaries.

As with Variant I, this variant has the property to only leak data of rep mov, rep
sto, and AVX2 loads, which allows a targeted leakage of data used in such constructs. In
contrast to Variant I, this variant is entirely address-agnostic and simplifies the recording
of the leakage. However, since an attacker can not control the index of the leaked data it
increases the post-processing complexity. Hence, as we can leak every byte of the victim
buffer with a certain probability, the post-processing has to stitch together the leaked
data, e.g., using the Domino technique presented by Schwarz et al. [300].

3.3.3 WC in Real-World Software

We analyzed real-world software to find occurrences of WC. We looked both for explicit
WC, i.e., WC memory defined through the PAT, and implicit WC is in the form of rep
mov and rep sto.

– 87 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

Library Version O0 O1 O2 O3 Os

Botan 2.11.0 12 14 68 *137 188
Openssl 1.1.1c 12 23 29 *34 347
Wolfssl 4.1.0 1 7 *49 72 199
Bearssl 0.6 10 26 45 56 *213
Sodium 1.0.18 3 12 *12 13 49
Gcrypt 1.8.4 5 5 *7 11 168

Table 3.6: rep mov instruction within cryptographic libraries.

Userspace. As userspace application cannot directly change the memory type for a
memory page, WC is mostly implicit in userspace. We analyzed when and how often GCC
emits a rep mov sequence when compiling applications. We focussed mainly on potential
attack targets, i.e., an application that processes sensitive information. If GCC optimizes
the application for code size (-Os), it emits the most rep mov instructions as rep mov
is the smallest possible code sequence that can copy memory regions. Similarly, rep sto
is the smallest code sequence to initialize memory with a defined value.

In addition to the compiler’s implicit WC usages, we also found the explicit use of
WC memory types in the userspace. Although implementation-specific, both OpenGL and
Vulkan support memory buffers marked as WC. Memory buffers allocated as write-only
buffers are likely to be assigned as WC memory by the driver.

Linux kernel. The Linux kernel also relies on rep mov to copy data. In contrast to
userspace applications, the usage of rep mov is not to optimize the kernel binary for size.
It is used independently of the used compilation flags, as the kernel generally does not use
floating-point or SIMD operations. Hence, rep mov is the most efficient way to copy data.
As there is a small startup penalty when using rep mov, only strings with a minimum
length of 64B use rep mov for a copy. For shorter strings, or if fast-string operations
are not supported, the kernel falls back to a simple copy loop. We reverse-engineered
the kernel binary for kernel 5.0.0 shipped with Ubuntu to analyze it for the usage of rep
mov. We found 517 usages of rep mov in 374 functions in the binary. While many of
the functions are only used once in the kernel setup phase (e.g., to copy and decompress
parts of the kernel, set up EFI and several devices, initialize the architecture, or apply
microcode updates), some of them are used regularly. These functions include, amongst
others, memcpy, memmove, copy_from_user, and copy_to_user.

– 88 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

3.3.4 Leakage Performance of Medusa

We evaluated the performance of Medusa based on our proof-of-concept implementa-
tions.

Environments. We evaluated all variants of Medusa on our Intel and AMD CPUs
mentioned before. All environments run Ubuntu with a recent 5.0 kernel version. For
CPUs vulnerable to Meltdown, we enable the KPTI software mitigation. We successfully
used all variants in all tested environments.

Performance. We consider the leakage rate and the false-positive rate when using
Medusa on a colluding victim to evaluate the performance. This choice provides an
upper bound for the leakage rates we can expect when using Medusa in a side-channel
attack where the victim is not colluding. We started a victim application on one logical
core, which leaks a known value. On the sibling hyperthread, we ran Medusa repeatedly
for 2 s and recorded the correctly and incorrectly leaked values. With Variant 1, we achieve
an average leakage rate of 0.19 kB/s (n = 100, σx̄ = 0.0023), with a false-positive rate of
47.7% (n = 100, σx̄ = 0.002). For Variant 2, the leakage rate is on average 36.23 kB/s

(n = 100, σx̄ = 0.15) with a false-positive rate of 0.559% (n = 100, σx̄ = 0.0005).
Finally, with Variant 3, we achieve an average leakage rate of 0.13 kB/s (n = 100, σx̄ =
0.0016) and a false-positive rate of 3.91% (n = 100, σx̄ = 0.0017).

We have based these numbers on our unoptimized proof-of-concept implementation.
Hence, these numbers cannot be taken as upper bounds for the leakage rate (and
false-positive rate), as we expect that the leakage can be improved when improving the
implementation.

Cross-VM covert channel. To evaluate the leakage rate of Medusa in the cross-
VM scenario, we evaluate the performance of a cross-VM covert channel. While user
applications can mount the covert channel, we focus on the cross-VM case as it is the
most restricted scenario. For our setup, we use two co-located VMs running on an Intel
Core i7-8650U running Ubuntu 18.04.3. Both VMs are running Ubuntu 18.04.3.

For the sender, we use a rep mov instruction, which continuously copies a 256-byte
buffer containing the encoded data. We redundantly encode every 32-bit data packet by
repeating it 32 times inside the buffer. Every 32-bit data packet consists of 8-bit data,
an 8-bit checksum, a constant prefix, and a sequence number. The data-packet format
resembles the setup from Schwarz et al. [300] to make the results comparable.

The receiving application leverages Medusa Variant 3 to leak victim data. Although
the leaked data’s redundancy reduces the speed, it increases the robustness, as any part

– 89 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

of the leaked buffer contains the data. Moreover, due to the checksum, which we can
already verify during the transient execution [300], we do not receive any unrelated data,
making the receiver robust against any system noise.

We observed an average transmission rate of 14.3B/s (n = 1000, σx̄ = 0.56) in the
cross-VM scenario. In all cases, the transmission was error-free. Due to the encoding
scheme’s overhead, the performance is significantly slower than Medusa Variant 3 (cf.
Section 3.3.4). We expect that more sophisticated encoding schemes, including error
correction [233], can significantly improve the performance of the covert channel.

Leaking kernel data transfers. As discussed in Section 3.3.3, the Linux kernel
also used rep mov for the internal data-transfer functions, including memcpy, memmove,
copy_from_user, and copy_to_user.

Root password hash. As described by Van Schaik et al. [356], the unprivileged passwd
-S command reads the contents of the user-inaccessible /etc/shadow file containing the
password hashes of local users. They managed to leak 21B in 24 h using the RIDL attack.
Schwarz [296] showed that the same attack is more efficient with ZombieLoad by leaking
16B in 1.25min.

We also reproduced this attack using Medusa. While we can also leak the root
password hash with Medusa, the leakage rate depends on the hash’s leaking part. Due
to the leakage pattern of Medusa, we always can leak blocks of the hash within 1 s,
similarly to ZombieLoad, while for other blocks, it takes up to 1 h per byte, similarly to
RIDL.

File I/O. Generally, Medusa can leak any data transfer between the kernel and the
userspace, such as the files’ contents when reading or writing them. We verified that we
could leak the content by using a file with known contents. We continuously read the file
from one application running on one hyperthread while running Medusa in a different
userspace application on the sibling hyperthread. As the kernel handles every file read via
the read syscall, the entire file content is copied from the kernel to the userspace victim
application. On average, we were able to leak 12.3B/s of correct values from the file.

Another case of data transfer is swapping. If the system copies application pages to
or from the swap device, an adversary can potentially leak the data using Medusa.

– 90 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

3.4 Discussion

In this chapter, we performed an in-depth analysis of MDS attacks. We introduced a
fuzzing-based analysis tool Transynther, which mutates the basic block of existing
variants of Meltdown attacks to generate new subvariants. We analyzed selected CPUs
using Transynther to better and found new MDS variants that only target fast string
copies. Our findings proposed a new attack named Medusa, which leaks data from WC
memory operations. Since Medusa uses only specific operations, it is more targeted. To
demonstrate the effectiveness of Medusa, we ran several case studies. We demonstrated
how one could recover information from kernel data transfers such as the root password
hash or leak the content using a file with known contents. Further, using Medusa, we
will show how to recover full RSA keys from OpenSSL by pooling leakages observed during
key decoding, amplified using lattice techniques(§6.3).

We have designed the Transynther to find Meltdown-type vulnerabilities auto-
matically. Other transient-execution attacks, such as Spectre-type attacks, are not in
scope for Transynther. The reason is that Spectre attacks exploit the intentional,
well-understood behavior of branch predictors. Spectre attacks can abuse several branch
predictors [62], and the types of branch predictors are usually documented for every
microarchitecture. Hence, we do not expect that Transynther would detect any new
Spectre variants even when adapted for finding such attacks. Meltdown-type attacks,
however, exploit CPU vulnerabilities that can be triggered in multiple different ways.
Hence, as this paper has shown with Medusa, Transynther can discover new variants
and potentially even help find Meltdown-type attacks on different platforms. In related
work, Xiao et al. [378] analyze both Meltdown- and Spectre-type vulnerabilities in terms
of speculation window, triggers, and different covert channels. They also rely on templates
to build code snippets analyzed for vulnerabilities. Next, we discuss how Transynther
can benefit from hardware simulation and information flow tracking (§3.4.1), and then we
generalize the root cause for Meltdown-style vulnerabilities (§3.4.2).

3.4.1 Extending Transynther

Transynther works at the post-silicon stage in which we test an actual CPU rather
than a pre-silicon schematic or simulator. Additionally, we do not have access to debug
features that may expose microarchitectural components over a debug protocol like the
JTAG. This ability of Transynther to perform black-box testing on a real product
is one of our technique’s benefits. It enables third-parties to do security testing of
closed-source hardware, and our findings will directly translate to real-world security
problems. Additionally, we could improve the accuracy of Transynther with access

– 91 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

to open-source hardware or debug features. Such improvements may also enable the
adaptation of information flow tracking for formal analysis and leakage quantification. In
this section, we discuss some of these potentials in more detail:

Debug features. Modern CPUs support advanced post-silicon debug features that are
generally not available to end-users. We have seen that previous vulnerabilities in the
CPUs’ firmware have allowed researchers to enable such debug features [101]. These
debug features may allow access to internal registers that map to both off-core and
core-private CPU resources such as cache and internal buffers.

Transynther can benefit from access to such registers for both the grooming
stage and the last stage of the meltdown-style attack, which currently uses a Flush+
Reload sequence to observe the potential modified state of the cache. Instead, with access
to such internal registers, we could potentially place arbitrary data into these internal
components rather than relying on the architectural instructions for buffer grooming. One
challenge of using architectural instructions for buffer grooming is isolating propagation
of tracked data into a specific component, which we could have avoided if there was a
mechanism to modify particular buffers’ value. Additionally, we could replace the Flush+
Reload sequence, which could suffer from noise, observing the cache state directly to get
more reliable covert-channel feedback.

We expect these changes to improve the accuracy of Transynther and further
reveal leakages and understandings that we can not observe now by solely relying on
architectural analysis. However, these hardware debugging is not possible with a high
frequency, reducing the analysis speed.

Presilicon simulation and testing. Generally, engineers simulate the design of a
system on an FPGA for pre-silicon testing [55]. Even if existing hardware debugging
features do not support internal CPU components, we can modify the simulator to add
accessibility and visibility to internal components. As a result, similar improvements as
having access to debug features should be possible for Transynther and with more
visibility. However, pre-silicon simulation on an FPGA runs with a lower frequency than an
actual CPU, which again reduces analysis speed and the number of tests we can execute.
Additionally, transient execution attacks are sensitive to timings [247, 378], which may
cause pre-silicon testing to experience some false positives or negatives compared to a
real-world product.

In summary, there are different benefits and trade-offs in terms of real-world results,
accuracy, and analysis speed with these approaches, including testing a final product (as in
Transynther), open-access testing, or pre-silicon testing. Therefore, we encourage the

– 92 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

community to explore these options further for automated microarchitectural vulnerability
testing.

Information flow tracking. In Transynther, we use heuristics to observe if a
placed value inside the microarchitecture can be leaked over the covert channel. However,
with access to open-source hardware and pre-silicon testing, we will gain more visibility
and accuracy. We can exploit this visibility to apply the state-of-the-art information flow
tracking techniques for microarchitectural security testing [289]. For instance, we can
track a specific value to see if it taints to various microarchitectural components before
reaching a covert channel and mark them as relevant to the leakage source. This approach
would allow us to provide automated explainability rather than manually analyzing the
artifacts with performance counters, an alternative in Transynther.

We may also reach tighter security boundaries by checking possible conditions where
transient data falsely reach an architecturally-visible component. In contrast, currently,
we only rely on a cache covert channel, which is not the only component for constructing
covert channels. In a similar direction, speculative taint tracking (STT) proposes mitigation
for Spectre by tracking the flow of annotated information from the software into the
microarchitecture [388]. Although this work suggests mitigation for annotated secrets,
one can combine similar taint tracking techniques with a fuzzing-based approach like
Transynther to find and analyze microarchitectural vulnerabilities without annotation.

Furthermore, Information flow tracking for automated testing of transient execution
attacks creates the opportunity for automated impact analysis and classification of these
vulnerabilities. Our work relies on end-to-end attack demonstration on cryptographic
software to show the impact of these vulnerabilities in an empirical fashion. Demme
et al. [84] suggested side-channel vulnerability factor (SVF) as a metric to quantify the
amount of information leakage for side channels. A metric like SVF allows designers to
choose better security and performance trade-offs based on the amount and type of leaked
information. However, we are not aware of such metrics for transient execution attacks.
With a reliable pre-silicon testing environment and formal information flow tracking, one
may ultimately quantify the amount of leaked information and correlate it with the leakage
source. Quantification is crucial when we design mitigations. For example, without formal
quantification, we can not tell if eradicating a covert channel like cache from these attacks
would be a reasonable defense since we are not aware of how much information one can
leak with a new or existing vulnerability relying on an alternate covert channel [36].

– 93 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

3.4.2 Meltdown Root Cause Generalisation

We automatically generated thousands of different combinations using Transynther.
Transynther was able to reproduce Meltdown [224], ZombieLoad [300], RIDL [356],
Fallout [61], also known as Microarchitectural Store Buffer Data Sampling (MSBDS),
Store-to-Leak (S2L) [297], Spectre v1.2 [203], and Microarchitectural Load Port Data
Sampling (MLPDS) [157]. Furthermore, with Transynther, we synthesized multiple
new, previously unknown variants to trigger these attacks. As a result, by analyzing
the generated variants, we gained additional insights into Meltdown-type attacks. We
identified that the root cause of all known Meltdown-type attacks is that an aborted load
operation consumes any data that can be fetched first and provides them with dependent
instructions.

General root cause. From the vast amount of results generated by Transynther,
we can generalize the common root cause of known Meltdown attacks. As stated by
Canella et al. [62], a faulting load is the cause of the leakage for all known Meltdown,
where microcode assists are essentially microarchitectural faults [300]. In all attacks, we
see the same behavior, that the faulting load does not stall and cannot solely return
no data. Consequently, the faulting load transiently returns data that can be accessed
immediately and where at least parts of the address match.

Source of leakage. The attack leaks the data from different microarchitectural ele-
ments depending on the implementation of data-forwarding checks and where the fault
occurs. For example, ZombieLoad and Fallout exploit the same fault as the original
Meltdown attack, and RIDL uses the same condition as Foreshadow. In RIDL and Fore-
shadow’s case, it is the cleared present bit in the load target’s page-table entry. If the
L1 cache contains data with an address that matches the page-frame number, the load
takes this value. This case is known as Foreshadow or Meltdown-P-L1 [62]. If this is
not the case, e.g., because the page-frame number is 0 in the case of a NULL-pointer,
the next possibility for data with partial address matches is the line-fill buffer. This case
is known as RIDL or Meltdown-P-LFB [62]. The same principle applies to Meltdown,
ZombieLoad, and Foreshadow, where the user-accessible-bit in the page-table entry is
exploited. First, the CPU checks both the store buffer in parallel with the L1 data cache.
If a store-buffer entry has a partial address match, the faulting load consumes this data,
known as Fallout or Meltdown-US-SB [61]. Otherwise, if the cache can provide data
with partially matching addresses, this is considered as Meltdown-US [62]. In case the L1
cache cannot satisfy the request due to a cache miss or a cache-line conflict, the line-fill
buffer is queried, resulting in ZombieLoad [300] or Meltdown-US-LFB [62].

– 94 –

CHAPTER 3. MICROARCHITECTURAL DATA LEAKAGE VIA AUTOMATED SYNTHESIS

Hence, one of the insights from Transynther is that the type of the fault is
less important than where the fault occurs, i.e., which microarchitectural element is the
“closest” to the fault from which the faulting load can consume data.

– 95 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

Chapter 4

Controlled Instruction-Level
Attacks on Enclaves

Recent Intel CPUs include software guard extensions (SGX) [164] to allow trusted exe-
cution of critical code in so-called enclaves on top of a potentially compromised OS. In
Section 4.1, after giving an overview of SGX secure enclaves, we provide a characterization
of demonstrated attacks in the literature against Intel SGX. In particular, the adversarial
model of secure enclaves allows a system-level adversary to control high-precision inter-
rupts. In Section 4.2, we propose a novel interrupt-driven attack, called CopyCat, that
improve previous side-channel attacks against secure enclaves in terms of precision, spatial
resolution, and scalability. Finally, in Section 4.3, we discuss the application of CopyCat,
including a case study on how to use CopyCat to bypass previous mitigations. In
general, CopyCat also enables a new avenue of side-channel analysis and cryptanalysis
in the context of secure enclaves. We cover this aspect in Section 6.4, in which we
perform an extensive study of single-trace and deterministic attacks against cryptographic
implementations. As a result, we propose novel algorithmic attacks to perform single-trace
key extraction that exploits subtle vulnerabilities in the latest versions of widely-used
cryptographic libraries.

4.1 Attack’s Characterization

Secure enclaves. A trusted execution environment (TEE) allows trusted execution of
instructions on an untrusted CPU by leveraging hardware supported memory isolation
semantics, cryptographic primitives, and root of trust. The assumption is that the
hardware controls the root of trust. Thus, even system adversaries should not subvert

– 96 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

the confidentiality and integrity of processes executed in a trusted environment (secure
enclave).

Intel Software Guard Extensions (SGX) introduced support for user-mode enclaves
with the Skylake generation [192]. SGX provides an additional set of instructions that
enable the operating system (OS) and application developers to instantiate a secure
enclave that they can only invoke through a standard contract. Dedicated eenter and
eexit instructions switch the CPU in and out of “enclave mode”. SGX enclaves are
isolated at runtime in a memory area that is transparently encrypted and can be remotely
attested by the CPU. After correctly instantiating and validating the enclave module, the
hardware guarantees the enclave’s trusted execution. The OS is not allowed to influence
the execution of enclave instructions and observe the enclave at runtime. However, recent
microarchitectural attacks show how various microarchitectural properties can invalidate
these assumptions [82, 300, 348].

The main goal of SGX is to protect runtime data and computation from the system
and physical adversaries. SGX must remain secure in the presence of malicious OS; thus,
modification of OS resources for the facilitation of side-channel attacks is relevant and
within the considered threat model. Intel declared microarchitectural leakages out of
scope for SGX, thus pushing the burden of writing leakage-free constant-time code onto
enclave developers.

4.1.1 Microarchitectural Contention

In the past years, we have seen a continuous stream of software-based side-channel
attacks [15, 21, 104, 115, 244, 384, 385]. The first category of microarchitectural timing
attacks commonly abuses optimizations in modern CPUs, where a secret-dependent
state is accumulated in various microarchitectural buffers during the victim’s execution.
If these buffers are not flushed before a context switch to an attacker domain, the
attacker can reconstruct victim secrets by observing the attacker’s timing variations.
The success of these attacks critically relies on subtle timing differences, making them
inherently non-deterministic and prone to measurement noise [115]. Usually, a common
way to eliminate this class of stateful attacks is to isolate leaky microarchitectural
resources [87, 225, 337, 379].

Notably, while the CPU always safeguards the confidentiality and integrity of enclaved
execution, traditionally privileged OS software remains in charge of availability concerns.
SGX enclaves live in the virtual address space of a conventional, userspace process.
Enclave page-table mappings are verified but remain under the explicit control of the
untrusted OS. This design allows for demand-paging and oversubscription of the physically
available encrypted memory. The CPU may cache recent address translations in an internal

– 97 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

translation lookaside buffer (TLB), which is flushed by the CPU on every enclave transition.
When delivering asynchronous interrupts or exceptions, the CPU takes care to save and
scrub CPU registers before exiting the enclave securely. The software can subsequently
re-enter through the eresume instruction. Furthermore, in case of a page-fault event, the
CPU clears the lower bits representing the page offset in the reported address to ensure
that the OS can only observe enclave memory accesses at a 4KiB page-level granularity.

Attack Code/Data Granularity Noise

µ
-a
rc
h
co
nt
en
tio
n DRAM row buffer conflicts [360] Code + data 8 Low (1-8KiB) 8 High

Prime+Probe cache conflicts [49, 140, 245, 303] Code + data 8 Med (64-512B cache line/set) ∼ Med
Read-after-write false dependencies [244] Data 4 High (4B) 8 High
Branch prediction history buffers [104, 153, 218] Code 4 High (branch instruction) ∼ Low
Interrupt latency [352] Code + data 4 High (instruction latency class) 8 High
Port contention [15] Code 4 High (µ-op execution port) 8 High

Ct
rl
ch
an
ne
l Page faults [380] and page table A/D bits [353, 360] Code + data 8 Low (4KiB) 4 Deterministic

IA-32 segmentation faults [138] Code + data 8 Low/high (4KiB; 1B for enclaves ≤ 1MiB) 4 Deterministic
Page table Flush+Reload [353] Code + data 8 Low (32KiB) ∼ Low
CopyCat Code 4 High (instruction) 4 Deterministic

Table 4.1: Characterization of demonstrated Intel SGX microarchitectural side channels
(top) and controlled channels (bottom). Our novel CopyCat technique is highlighted at
the bottom and combines noise-free interrupt counting measurements with deterministic
page table accesses to reconstruct enclave-private control flow at a maximal, instruction-
level granularity.

While Intel SGX provides strong architectural isolation, several studies have highlighted
that enclave’s secrets may still leak through side-channel analysis. Section 4.1.1 summarizes
how all previously demonstrated side-channel attacks fall into two categories:1

• microarchitectural timing attacks, which may achieve a high granularity but are
inherently prone to measurement noise, and

• fully deterministic controlled-channel attacks that only offer a relatively coarse-
grained 4KiB page-level granularity.

CopyCat proposes the only generally applicable controlled-channel attack that is both
fully deterministic and offers a maximal, instruction-level granularity.

Microarchitectural timing side-channel attacks exploit the fact that various resources,
such as caches [49, 140, 245, 303], DRAM row buffers [360], branch predictors [104, 153,
218], dependency resolution logic [244], or execution ports [15] are competitively shared
between sibling CPU threads or not flushed when exiting the enclave. This contention
causes measurable timing differences in the attacker domain, allowing the attacker to

1Transient-execution attacks [300, 348, 349] are orthogonal to metadata leakage through side channels
and require recovery of the trusted computing base through complementary microcode and compiler
mitigations.

– 98 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

infer the enclave’s private control flow or data access pattern with varying degrees of
granularity. In the context of a TEE such as Intel SGX, attackers can mount such attacks
with less noise and improved resolution because the adversary controls the OS.

In particular, one line of work has developed interrupt-driven attacks [140, 218, 245,
351] that rely on frequent enclave preemption to sample side-channel measurements at
an improved temporal resolution. This technique has been demonstrated to amplify side-
channel leakage from the cache [245], the branch target buffer [218], and the directional
branch predictor [153]. Researchers have demonstrated similar techniques on ARM
TrustZone [287]. Nemesis [352] showed that while single stepping, the response time to
service an interrupt may reveal which instruction pipeline is executing. The SGX-Step
framework [351] has been leveraged in several other microarchitectural attacks [14, 153,
300, 348, 349, 352] to reliably single-step enclaves at a maximal temporal resolution by
means of precise and short timer interrupt intervals.

4.1.2 Controlled-Channel Attacks

Orthogonal to the first class of microarchitectural timing attacks, recent research on
controlled-channel attacks [138, 353, 360, 380] has abused the processor’s privileged
software interface to extract fully deterministic, noise-free side-channel access patterns
from enclave applications. While the operating system (OS) was traditionally not under
the attacker’s control, this assumption fundamentally changed with the rise of trusted
execution environments (TEEs), such as Intel SGX. Prior work [353, 380] has identified
page-table accesses and faults as privileged interfaces that can be exploited as no-
noise controlled channels to deterministically reveal enclave memory accesses at a 4KiB
page-level granularity. The paging channel has drawn considerable research attention
since it abuses the x86 processor architecture’s intrinsic property without relying on
microarchitectural states. In particular, controlled-channel attacks have proven to be
challenging to mitigate in a principled way, in spite of numerous defense proposals [69,
72, 266, 290, 311, 312, 326].

Xu et al. [380] first showed how privileged adversaries could revoke access rights on a
specific enclave page and get a deterministic notification using a page-fault signal when the
enclave next accesses that page. They demonstrated several attacks on non-cryptographic
applications by observing that page-fault sequences uniquely identify specific points in
the victim’s execution. Subsequent work [353, 360] developed stealthier techniques to
extract the same information without provoking page faults. These attacks interrupt the
victim enclave to flush the TLB forcefully and provoke page-table walks, which can later
be reconstructed through “accessed” and “dirty” attributes or cache timing differences for
untrusted page-table entries. Finally, Gyselinck et al. [138] demonstrated an alternative

– 99 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

controlled-channel attack that abuses legacy IA32 segmentation faults. Their attack offers
an improved, byte-level granularity in the first MiB of the enclave address space, but
only for the unusual case of a 32-bit enclave. Recent microcode updates have fixed this
behavior.

With CopyCat, we contribute an improved attack technique to refine the resolution
of existing controlled channels by precisely counting the number of executed enclave
instructions between successive page accesses. Prior work has similarly suggested an
additional temporal dimension for the paging channel by using interrupts to reconstruct
strlen loop iterations [350, 351], or by logging noisy wall-clock time [360] for page-access
events to improve stealthiness and reduce the number of TLB flushes. Recent work [200]
on enclave control flow obfuscation furthermore investigated using single-stepping in an
SGX simulator to identify software versions in an emulated enclave debug environment
probabilistically. This work shares the same core idea with CopyCat but does not
implement actual instruction counting attacks or provide a deterministic single-stepping
interrupt primitive outside of a simulator. In contrast to these specialized cases, CopyCat
explicitly recognizes instruction counting as a practical and generically applicable attack
primitive that can deterministically capture the execution trace within a single enclave
code page.

4.2 CopyCat: Instruction-Counting Side Channel

As already discussed in this chapter, the adversarial model presented by trusted execution
environments (TEEs) has prompted researchers to investigate unusual attack vectors. One
incredibly powerful class of controlled-channel attacks abuses page-table modifications
to reliably track enclave memory accesses at a page-level granularity. In contrast to the
noisy microarchitectural timing leakage, deterministic controlled-channel attacks abuse
indispensable architectural interfaces. These attacks cannot be mitigated by tweaking
microarchitectural resources.

We propose an innovative controlled-channel attack, named CopyCat, that deter-
ministically counts the number of instructions executed within a single enclave code page.
We show that combining the instruction counts harvested by CopyCat with traditional,
coarse-grained page-level leakage allows the accurate reconstruction of enclave control
flow at a maximal instruction-level granularity. CopyCat can identify intra-page and
intra-cache line branch decisions that ultimately may only differ in a single instruction,
underscoring that even extremely subtle control flow deviations can leak secrets from
secure enclaves. We demonstrate the improved resolution and practicality of CopyCat
on Intel SGX.

– 100 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

4.2.1 Introducing CopyCat

This section shows that the resolution of deterministic controlled-channel attacks extends
well beyond the relatively coarse-grained 4KiB page-level granularity. We introduce
CopyCat, an innovative interrupt-counting channel that can precisely reconstruct the
intra-page control flow of a secure enclave at a maximal, instruction-level granularity. Our
attack leverages the SGX-Step [351] framework to forcibly step into a victim enclave code
exactly one instruction at a time. While high-frequency timer interrupts have previously
been leveraged to boost microarchitectural timing attacks [140, 153, 218, 245, 352], we
exploit the architectural interrupt interface itself as a deterministic controlled channel.
In short, our attacks rely on the critical observation that merely counting the number
of times a victim enclave can be interrupted directly reveals the number of executed
instructions.

Our attacks rely on the critical observation that interrupts can force the enclave
to advance exactly one instruction at a time. Hence, merely counting the number of
steps reveals the number of instructions executed in the victim enclave. We show that
combining our fine-grained interrupt-based counting technique with traditional, coarse-
grained page-table access patterns [353, 360] as a secondary oracle allows us to construct
highly effective and deterministic attacks that track enclave control flow at a maximal,
instruction-level granularity. Crucially, the improved temporal dimension of CopyCat
overcomes the spatial resolution limitation of prior controlled-channel attacks, invalidating
a fundamental assumption in some previous defenses [174, 312] that presumes that
adversaries can only deterministically monitor enclave memory accesses at a coarse-
grained 4KiB granularity. Furthermore, in contrast to previous high-resolution SGX side
channels [15, 218, 244, 245, 352] that rely on timing differences from contention in some
shared microarchitectural state, CopyCat cannot be transparently mitigated by isolating
microarchitectural resources.

This section introduces the adversary model and explains how a deterministic single-
stepping interrupt primitive for SGX enclaves can be built before illustrating the basic
principle behind CopyCat through toy examples.

Attacker model. We assume the standard Intel SGX root adversary model with full
control over the untrusted OS [164]. SGX’s sharp threat model is justified, for instance, by
considering untrusted cloud providers under the jurisdiction of foreign states or end-users
with an incentive to break DRM technology running on their device. Following prior
work, we assume a remote, software-only adversary who has compromised the untrusted
OS, allowing the x86 APIC timer device to be configured to precisely interrupt the
enclave [140, 218, 245, 351] and modify page-table entries to learn enclaved memory

– 101 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

accessed at a 4KiB granularity [312, 353, 380]. Like previous attacks, we further assume
knowledge of the victim application, either through source code or the application binary.
We assume the enclave code is free from memory-safety vulnerabilities [350], and the Intel
SGX platform is updated against transient-execution attacks [300, 348].

The adversary’s goal is to learn fine-grained control-flow decisions in the victim enclave.
In contrast to noisy microarchitectural side channels [15, 49, 218, 244, 245, 352], we
can also target victims who process a secret only once in a single run (as is the case
in key generation) and hence victims who cannot be tricked to perform computations
on the same secret multiple times repeatedly. Crucially, in contrast to prior controlled-
channel attacks [353, 380], CopyCat offers intra-page granularity, and we assume that
conditional control flow blocks within the victim’s enclave are aligned “to exist entirely
within a single page” as officially recommended by Intel [174].

4.2.2 Building the Interrupt Primitive

Debug features like the x86 single-step trap flag are explicitly disabled by the Intel SGX
design [164] while in enclave mode. Recent research, however, has demonstrated that
root adversaries may abuse APIC timer interrupts to pause a victim enclave at fixed
time intervals forcibly. We build our interrupt primitive on top of the open-source SGX-
Step [351] framework, which offers a maximal temporal resolution by reliably interrupting
the victim enclave at most one instruction at a time. SGX-Step comes as a Linux kernel
driver and runtime library to configure APIC timer interrupts and untrusted page-table
entries directly from userspace.

Deterministic single-stepping. We first choose a suitable value for the platform-
specific SGX_STEP_TIMER_INTERVAL parameter using the SGX-Step benchmark tool on
our target CPU. This value ensures that the victim enclave always executes at most
one instruction at a time. Previous studies [153, 351, 352] have reported reliable single-
stepping results with SGX-Step for enclaves with several hundred thousand instructions
where in the vast majority of cases (> 97%) the timer interrupt arrives within the first
enclave instruction after eresume, i.e., single-step, and in all other cases the interrupt
arrives within eresume itself, i.e., zero-step before an enclave instruction is ever executed.
Furthermore, zero-step events can be filtered out by observing that the “accessed” bit in
the untrusted page-table entry mapping the enclave code page is only ever set by the CPU
when the interrupt arrived after eresume, and the enclave instruction has indeed been
retired [352]. Hence, to achieve noiseless and deterministic single-stepping for revealing
code and data access at an instruction-level granularity, we rely on the observation that
an adequately configured timer never causes a multi-step. We then discard any zero-step

– 102 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

events by querying the “accessed” bit in the untrusted page-table entry mapping the
current enclave code page. The experimental evaluation in Section 6.4 confirms that
our single-stepping interrupt primitive indeed behaves fully deterministically when using
CopyCat to count several millions of enclave instructions.

Before entering the single-stepping mode, we first use a coarse-grained page-fault
state machine to advance the enclaved execution to a specific function invocation on
the targeted code page. Such page-fault sequences have been shown to locate specific
execution points in massive binaries uniquely [312, 365, 380]. Once we discover the
particular code page of interest, CopyCat starts counting instructions until detecting
the next code or data page access to reveal instruction-level control flow.

We will clarify further how we narrow down the attack trace to a target function. In
summary, we count the number of instructions between page visits. We use the paging
channel as a secondary oracle to group instruction counts, which are not correlated to
binary size. Following prior research [380], we first use a coarse page-fault sequence state
machine to uniquely detect the target code page’s start containing the secret-dependent
branch. We then switch to single-stepping mode. Compilers in practice generate code with
different page accesses at different instruction offsets in both branches for various reasons
(data/stack accesses, subroutine calls). As an optimization, we first use a coarse-grained
page-fault state machine to efficiently advance the enclaved execution to the targeted
code page before switching to single-stepping with CopyCat to reveal instruction-level
control flow within the code page of interest.

Effects of macro fusion. Interestingly, we found that we can use CopyCat to study
a microarchitectural optimization in recent Intel Core CPUs, referred to as macro fusion
[163, 372]. The idea behind this optimization technique is to combine specific adjacent
instruction pairs in the front-end into a single micro-op that executes with a single dispatch
and hence frees up space in the CPU pipeline.

Intel documents that fusion only takes place for some well-defined compare-and-
branch instruction pairs [163, §3.4.2.2], which are additionally not split on a cache
line boundary [163, §2.4.2.1]. We experimentally found that for fusible instruction pairs,
CopyCat consistently counts one interrupt only, even though the enclave-private program
counter has been advanced with two assembly instructions forming the fused pair. Our
experimental observations on Kaby Lake confirm Intel’s documented limitations, e.g.,
test;jo can be fused (interrupted once) but not cmp;jo (interrupted twice); and fusible
pairs that are split across an exact cache line boundary are not fused (interrupted twice).
Importantly, we found that macro fusion does not impact the reliability of CopyCat as
a deterministic attack primitive. In all of our attacks, we consistently observed that macro
fusion depends solely on the architectural program state, i.e., opcode types, and their

– 103 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

alignments. Hence, a given code path always results in the same deterministic number of
interrupts.

To the best of our knowledge, CopyCat contributes the first methodology to
research and reverse-engineer macro fusion optimizations in Intel CPUs independently.
While our observations confirm that macro fusion behaves as specified, we consider
a precise understanding of the macro fusion of particular importance for compile-time
hardening techniques that balance conditional code paths).

4.2.3 Instruction-Level Page Access Traces

Leakage model. CopyCat complements the coarse-grained 4KiB spatial resolution
of previous page fault-driven attacks with a fully deterministic temporal dimension. By
interrupting after every instruction and querying page-table “accessed” bits, CopyCat
adversaries obtain an instruction-granular trace of page visits performed by the enclave.
This trace may reveal private branch decisions whenever a secret-dependent execution
path does not access the same set of code and data pages at every instruction offset in
both branches. Importantly, even when both execution paths access the same sequence
of code and data pages, and hence remain indistinguishable for a traditional page-fault
adversary [380], we show below that compilers may in practice still emit unbalanced
instruction counts between page accesses in both branches.

If/Else statement. Conditional branches are pervasive in all applications [140, 149,
218, 380], but even side-channel hardened cryptographic software may assume that
carefully aligned if/else statements or tight loops cannot be reliably reconstructed (§6.4).
Figure 4.1 provides a minimal example of an if statement that has been hardened using a
balancing else branch, e.g., as in the Montgomery Ladder algorithm. The corresponding
assembly code, as compiled by gcc, only differs in a single x86 instruction that can fit
entirely within the same page and cache line. This ’if’ branch is hence indistinguishable
for a page-fault or cache adversary. While finer-grained, branch prediction side channels
may still reconstruct the branch outcome, these attacks typically require several victim
runs. They can also be trivially addressed by flushing the branch predictor on an enclave
exit.

Figure 4.1 illustrates how CopyCat can deterministically reconstruct the branch
outcome merely by counting the number of instructions executed on the P0 code page
containing the ’if’ branch before control flow is eventually transferred to the P1 code page
containing the add function, as revealed by probing the “accessed” bit in the corresponding
page-table entry. The example furthermore highlights that even if all of the code were to fit
on a single code page P0 = P1, CopyCat adversaries could still distinguish both branches

– 104 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

if (c == 0){ r = add(r, d); } else { r = add(r, s); }

test %eax,%eax
je 1f
mov %edx,%esi

1:
call add
mov %eax,-0xc(%rbp)

test/je call
Code P0

Stack S
Code P1

c = 0

test/je mov call
Code P0

Stack S
Code P1

c = 1

Figure 4.1: Balanced if/else statement (top), compiled to assembly (left). Precise page-
aligned, intra-cache line conditional control flow can be deterministically reconstructed
with instruction-granular CopyCat page access traces (right).

by comparing the relative position of the data access to the stack page S performed by
the call instruction. In particular, while traditional page-fault adversaries always see the
same page fault sequence (P0, S, P1), independent of the secret, CopyCat enriches this
information with precise instruction counts, resulting in distinguishable instruction-level
page access traces (P0, P0, S, P1) vs. (P0, P0, P0, S, P1).

Switch-Case statement. As a further example, Figure 4.2 illustrates precise control-
flow recovery in a switch-case statement. The code blocks again fall entirely within
a single page and cache line, and where the code access the same data in every case.
While traditional page-fault adversaries always observe an identical, input-independent
access sequence to the code and data pages, and the tight arrangement of conditional
jumps poses a considerable challenge for branch prediction adversaries [218], CopyCat
deterministically reveals the complete control flow through the relative position of the
data access in the instruction-granular page access traces.

4.3 The Effectiveness of CopyCat

CopyCat interrupts a victim enclave precisely one instruction at a time and relies on
a secondary page-table oracle to assign a spatial resolution to each instruction-granular
observation. Thus, our attack is only useful when the victim code contains a secret-
dependent branch that accesses a different code or data page at the same instruction offset
in both execution paths. In contrast to previous controlled-channel attacks [312, 353, 380],
our notion of instruction-granular page access traces allows the sequence of code and
data page visits in both branches to be identical.

We practically only need the target application to access a “marker” page at a different
relative instruction offset in the secret-dependent execution path. We found that in practice,

– 105 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

switch(c)
{

case 0:
r = 0xbeef;
break;

case 1:
r = 0xcafe;
break;

default:
r = 0;

}

test/je mov jmp
Code

Data
Case 0

test/je cmp/je mov jmp
Code

Data
Case 1

test/je cmp/je jmp mov
Code

Data
Default

Figure 4.2: Conditional data assignments in a page-aligned switch statement (left)
deterministically leak through their relative positions in the precise, instruction-granular
page access traces extracted by CopyCat (right).

compilers generate code with different page accesses at different instruction offsets in both
branches for a variety of reasons, including data or stack accesses, arithmetic operations,
and subroutine calls. To highlight the importance of CopyCat for non-cryptographic
applications, we employ its improved resolution to defeat a state-of-the-art compiler
defense [149] against branch predictor leakage. This demonstration again shows that
CopyCat changes the attack landscape and requires orthogonal mitigations compared
to microarchitectural side channels.

4.3.1 Branch Shadow-Resistant Code

Listing 2 provides an elementary example function with secret-dependent branches. We
provide the corresponding assembly output in Listing 3, as produced by the LLVM-based,
open-source compiler mitigation pass [149] against branch shadowing attacks, described
in Section 4.3.2. We enabled both rewriting of conditional branches via the trampoline
area and protection against timing attacks via dummy instruction balancing by passing the
-mllvm -x86-branch-conversion and -mllvm -x86-bc-dummy-instr options. Note
that the open-source release has not integrated the randomizer. All code blocks on the
trampoline area would still have to be randomly re-shuffled at runtime to protect against
branch-shadowing attacks. For sufficient entropy, trampoline areas have to be larger than
4KiB [149], and hence the trampoline will occupy at least one separate page.

We reveal control flow in the instrumented code of Listing 3 using CopyCat as
follows. In the case where the secret-dependent ’if’ condition is true, the indirect branch at
line 20 will execute the single-instruction jmp_if block on the trampoline page, followed
by 4 instructions on the instrumented code page, totaling 5 instructions before reaching

– 106 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

Listing 2 Sample code snippet with conditional branching.

void my_func(int a) {
if (a != 0) block1++; else block2++;
block3++;

}

the end_if marker. In contrast, if the ’if’ condition is false, the indirect branch at line 20
will transfer to the skip_if block on the trampoline page, totaling 4 instructions before
eventually reaching the end_if marker back on the instrumented code page. Similar
unbalanced instruction counts follow for the else block.

We experimentally verified that CopyCat adversaries could deterministically learn
the if condition by merely counting instructions and observing page accesses. Moreover,
because the dummy instructions do not result in exactly balanced instruction counts, as
explained above, merely counting the total amount of executed instructions even suffices
in itself without having to distinguish accesses to the trampoline page.

4.3.2 Defeating Branch Shadowing Defenses

Lee et al. [218] first proposed Zigzagger, an automated compile-time approach to defend
against branch-shadowing attacks by rewriting conditional branches as cmov and a tight
trampoline sequence of unconditional jump instructions. However, their compiler transfor-
mation’s security relies on the trampoline sequences being non-interruptible Previously,
researchers have demonstrated several proof-of-concept attacks on Zigzagger using precise
interrupt capabilities [138, 351, 352]. In response, Hosseinzadeh et al. [149] proposed
improved compiler mitigation that employs runtime randomization. This mitigation dy-
namically shuffles jump blocks on the trampoline area. As a result, it effectively hides
branch targets and making branch shadowing attacks probabilistically infeasible. Figure 4.3
illustrates how this mitigation redirects conditional branches through randomized jump
locations 1© on the trampoline page while ensuring that the program always executes
all jumps 2© outside of the trampoline in the same order. Finally, to protect against
timing attacks, the trampoline code is explicitly balanced with dummy instructions 3© to
compensate for skipped blocks in the instrumented code.

Case-study attack. We evaluated CopyCat on the open-source2 release of the
compiler hardening scheme [149] based on LLVM 6.0. We refer to Section 4.3.1 for the

2Branch shadowing mitigation: https://github.com/SSGAalto/sgx-branch-shadowing-
mitigation

– 107 –

https://github.com/SSGAalto/sgx-branch-shadowing-mitigation
https://github.com/SSGAalto/sgx-branch-shadowing-mitigation

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

Listing 3 Hardened assembly output, corresponding to the source code in Listing 2, as
produced by the open-source branch shadowing mitigation LLVM compiler pass.

1 jmp my_func /*** BEGIN TRAMPOLINE ***/
2 jmp_done: jmp done
3 jmp_done2:jmp done
4 skip_else:add $0x0,%r13b # compensating dummy
5 lea jmp_done2(%rip),%r15
6 jmp end_else
7 jmp_else: jmp else
8 skip_if: add $0x0,%r13b # compensating dummy
9 add $0x0,%r13b # compensating dummy

10 lea jmp_else(%rip),%r15
11 jmp end_if
12 jmp_if: jmp if /*** END TRAMPOLINE ***/
13 my_func: push %rbp
14 mov %rsp,%rbp
15 mov %edi,-0x4(%rbp)
16 cmpl $0x0,-0x4(%rbp)
17 lea jmp_if(%rip),%r15
18 lea skip_if(%rip),%r13
19 cmove %r13,%r15
20 jmp *%r15
21 if: mov block1(%rip),%eax
22 add $0x1,%eax
23 mov %eax,block1(%rip)
24 lea skip_else(%rip),%r15
25 end_if: jmp *%r15
26 else: mov block2(%rip),%eax
27 add $0x1,%eax
28 mov %eax,block2(%rip)
29 lea jmp_done(%rip),%r15
30 end_else: jmp *%r15
31 done: mov block3(%rip),%eax
32 add $0x1,%eax
33 mov %eax,block3(%rip)
34 pop %rbp
35 ret

full assembly output of a minimal C example program. First, we found that the dummy
instruction balancing pass is not always entirely accurate and may result in execution
paths that differ slightly by one or two instructions (cf. Section 4.3.1). Crucially, while
such subtle deviations would indeed very likely not be exploitable through timing, as
initially envisioned by the mitigation, we experimentally validated that CopyCat can
deterministically distinguish the unbalanced paths. Second, even when the code paths are
perfectly balanced, Figure 4.3 illustrates that merely counting the number of instructions

– 108 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

CMOVE JMP
JMP MOV

JMP
JMPNOP JMP ...

NOPMOV ADD

NOP NOP

NOP
if block else block

1 2

3 1
Figure 4.3: Compiler mitigation [149] for branch prediction side channels. (1) conditional
branches are redirected through a randomized jump location on a trampoline page; (2)
compensating dummy instructions are executed on the trampoline page to hide timing
differences; (3) jumps outside of the trampoline area always performed in the same order.
CopyCat reveals control flow via the number of instructions executed on the trampoline
page (red, dashed).

executed on the trampoline page deterministically reveals whether the victim is running
balancing dummy code in a trampoline block or the actual if the block on the instrumented
code page. Note that the compiler carefully maintains a constant jump order when moving
back and forth between the trampoline area and the instrumented code. The compiler
ensures that the execution remains oblivious to classical page-fault adversaries [312, 380]
who will always observe the same sequence of pages regardless of the executed code
blocks.

4.4 Discussion

Our works show that deterministic controlled-channel adversaries are not restricted to
observing enclave memory accesses at the level of coarse-grained 4KiB pages, but can also
precisely reconstruct intra-page control flow at a maximal, instruction-level granularity.
We demonstrated the practicality and improved resolution of CopyCat by discovering
highly dangerous single-trace key extraction attacks in several real-world, side-channel
hardened cryptographic libraries. In contrast to known microarchitectural attacks, the
more fundamental threat of deterministic controlled-channel leakage cannot be dealt with
by merely flushing or partitioning microarchitectural state. Instead, it requires research
into more principled solutions.

Comparison to branch prediction leakage. Section 4.1.1 identified branch predic-
tion side channels [104, 153, 218] as an alternative attack vector to spy on enclave
control flow at an instruction-level granularity with reasonable accuracy. In contrast to
CopyCat, however, microarchitectural leakage from branch predictors is inherently noisy
and typically requires multiple runs of the victim enclave, ruling out this class of side
channels to perform noiseless single-trace attacks on key generation algorithms that we

– 109 –

CHAPTER 4. CONTROLLED INSTRUCTION-LEVEL ATTACKS ON ENCLAVES

will present in Section 6.4.4. Furthermore, in contrast to the architectural interrupt and
paging interfaces exploited by CopyCat, branch prediction side-channel leakage can
be eradicated relatively straightforwardly by flushing branch history buffers when exiting
the enclave, similar to the microcode updates Intel already distributed to flush branch
predictors on enclave entry in response to Spectre threats [68]. Section 4.3.2 further
highlighted the complementary aspects of interrupt counting and branch prediction leakage.
We showed that CopyCat defeats state-of-the-art compiler defenses that harden code
against branch prediction side channels [149].

In addition to the deterministic characteristic, CopyCat is significantly easier to
scale and replicate, considering that branch predictors feature an intricate design that
changes from one microarchitecture to another. BranchScope [104], for instance, relies on
finding a heuristic through reverse engineering to probe a specific branch. This heuristic
is dependent on

• the state of other components like global and tournament predictors; and

• the exact binary layout of the victim program.

Previous attacks focus on distinguishing one or a small number of branches. We believe
that replicating BranchScope to probe multiple branches across various targets would be
challenging and may even be practically infeasible. CopyCat, in contrast, is much easier
to replicate, and we will show in Section 6.4 that our attack scales to probing the entire
execution path in a single run.

Automation opportunities. The case-study attacks presented earlier relied on careful
manual inspection of the victim enclave source code and binary layout to identify vulnerable
secret-dependent code patterns. Similarly, we performed the CopyCat-based cryptanal-
ysis in Section 6.4 on manual analysis of application code and binary. We expect that
dynamic analysis and symbolic execution approaches could further improve our attacks’ ef-
fectiveness and increase confidence for defenders by automating the discovery of vulnerable
code patterns [359, 368] and possibly even the synthesis of proof-of-concept exploitation
code. While the requirements for vulnerable code patterns are relatively clear-cut, as
described above, we expect that it may be particularly challenging to track the propagation
of secrets and distinguish between automatically non-secret and secret-dependent control
flows [38].

– 110 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Chapter 5

Timing Analysis of
Physically-isolated Elements

In this chapter, we look into a popular cryptographic-coprocessor, the trusted platform
module (TPM). We show that although physical isolation promises stronger security
guarantees, it is still susceptible to side-channel attacks. Notably, the tight integration of
these security chips into the system facilitates the exploitation of side channels. Section 5.1
provides some background information regarding TPMs, their implementation and previous
security issues. Then, Section 5.2 discuss our part of our contribution in TPM-Fail, which
shows that precise timing analysis of these devices reveals critical security vulnerabilities.
Finally, we summarize our findings in Section 5.3

5.1 Trusted Platform Module

As we mentioned throughout this dissertation, hardware support for trusted computing has
been proposed based on trusted execution environments (TEE) and secure elements such
as the Trusted Platform Module (TPM) [242]. Trusted Platform Module (TPM) serves as
a hardware-based root of trust that protects cryptographic keys from the privileged system
and physical adversaries. Computer manufacturers have been deploying TPMs on desktop
workstations, laptops, and servers for over a decade. With a TPM device attached to the
computer, computer manufacturers can execute the root of trust in a separate hardened
cryptographic core, preventing even a fully compromised OS from revealing credentials
or keys to adversaries. TPM 2.0, the latest standard, is deployed in almost all modern
computers and is required by some core security services [238]. TPM 2.0 supports multiple
signature schemes based on elliptic curves, which helps applications to benefit from the
state-of-the-art and more efficient signing operations for remote attestation [342].

– 111 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

TrustedUntrusted

TPM

PCR Registers Crypto Engine

Random Number
Generator

Execution
Engine

Volatile Memory Non-volatile
Memory

Host CPU Main Memory

System Software

Applications

Remote Attestation
 Request

Figure 5.1: The trusted components of a TPM include the PCR registers, crypto engine,
and random number generator. Other hardware components, system software, and
applications are considered untrusted.

TPMs are secure elements which are typically dedicated physical chips with Common
Criteria certification at EAL 4 and higher, and thus provide a very high level of security
assurance for the services they offer [67]. As shown in Figure 5.1, the TPM, including
components like cryptographic engines, forms the root of trust. On a commodity computer,
the host CPU connects to the TPM via a standard communication interface [332]. For
trusted execution of cryptographic protocols, applications can request that the OS interact
with the TPM device and use various cryptographic engines that support hash functions,
encryption, and digital signatures. The TPM also contains non-volatile memory for secure
storage of cryptographic parameters and configurations. For instance, a Virtual Private
Network (VPN) application can use the TPM to securely store authentication keys and
perform authentication without direct access to the private key. TPM also supports
remote attestation, in which the TPM will generate a signature using an attestation
key derived from the device endorsement key. The manufacturer directly programs the
endorsement key into the TPM during manufacturing. Later on, remote parties can use
the signature and the public attestation key to attest to the system’s integrity. They can
use the public endorsement key to verify the integrity of the TPM itself.

5.1.1 TPM Deployment

TPMs have initially been designed as separate hardware modules, but new demands have
resulted in software-based implementations. The physical separation of the TPM from
the CPU is an asset for protection against system-level adversaries [26]. However, its

– 112 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

lightweight design and low-bandwidth bus connection prevent the TPM from being used
as a secure cryptographic co-processor for high-throughput applications. TEE technologies
such as ARM TrustZone [22] are a more recent approach to bringing trusted execution
right into the CPU, at minimal performance loss.

Firmware TPMs (fTPM) can run entirely in software within a TEE like ARM Trust-
zone [276]. In a cloud environment, the hypervisor executes a software-virtualized TPM
device within its trust boundary [122, 239, 271]. In this case, user applications still benefit
from the defense against attacks on the guest OS. Virtual TPMs may or may not rely on
physically present TPM hardware. Intel Platform Trust Technology (PTT), introduced in
Haswell CPUs, is based on fTPM and follows a hybrid hardware/software approach to
implement the TPM 2.0 standard. By enabling Intel PTT, computer manufacturers do
not need to deploy dedicated TPM hardware.

Intel firmware-based TPM. The Intel management engine (ME) provides hardware
support for various technologies such as Intel Active Management Technology (AMT),
Intel SGX Enhanced Privacy ID (EPID) provisioning and attestation, and platform trust
technology (PTT) [358]. Intel ME is based on an embedded co-processor integrated into
all Intel chipsets. This co-processor runs modular firmware on a tiny microcontroller. Since
the Skylake generation, Intel has used the MINIX3 OS running on a 32-bit Quark x86
microcontroller, which has an operating frequency of 32MHz [178]. In particular, these
firmware modules and the cryptographic module provide commonly used functions for
various services. Previous reverse-engineering efforts have uncovered some of the secrets of
the Intel ME implementation [316]. They show that attackers can abuse classical software
flaws and vulnerabilities related to the JTAG to compromise Intel ME [99, 100, 101].

Intel PTT, which is essentially a firmware-based TPM, has been implemented as a
module that runs on top of the Intel Management Engine (ME). Intel PTT executes
on a general-purpose microcontroller, but since it runs independently from the host
CPU components, it resembles a more secure hybrid approach than the original Intel
fTPM [276], which executes on a TEE on the same core. The exact implementation
of the cryptographic functions shared by Intel PTT, EPID, and other cryptographically
relevant services is not publicly available.

5.1.2 Vulnreabilities and Shortcomings

The traditional communication interface between dedicated TPM hardware and the CPU
is the Low Pin Count (LPC) bus, which is vulnerable to passive eavesdropping [214].
Additionally, researchers have managed to compromise the PCRs based on short-circuiting

– 113 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

the LPC pins [196, 319]. However, for cryptographic-coprocessors on the system-on-chip
like the Intel fTPM, these attacks are naturally mitigated.

Additionally, researchers have demonstrated other engineering flaws due to the BIOS
and bootloader [57, 196], and attacks, exploiting vulnerabilities related to the TPM
power management [142]. Nemec et al. developed the “Return of Coppersmith’s Attack”
(ROCA), which demonstrated passive RSA key recovery from the public key resulting
from the particular structure of primes generated on TPM devices manufactured by
Infineon [257]. The remote timing attacks that we demonstrate are orthogonal to the key
generation issues responsible for ROCA. Our work also focuses on the black-box firmware
executing the more complex cryptographic operations. Spark. et al. [319] warn the
danger of timing attacks on TPMs, but to the best of our knowledge, nobody showed
such attacks on TPMs, as we demonstrate a class of remote timing attack against TPM
devices.

As defined by the Trusted Computed Group (TCG), the TPM attempts to mitigate the
threat of physical attacks and side channels through a rigorous and lengthy evaluation and
certification process. Most physical TPM chips have been certified according to Common
Criteria, which involves evaluation through accredited testing labs. Testing labs conduct
security evaluations according to protection profiles. For TPM, a specific TCG protection
profile exists, which requires the TPM to be secure against side-channel attacks, including
timing attacks [341, p. 23].

However, TPMs have previously suffered from vulnerabilities due to weak key generation
even on certified devices [257]. However, the industry’s widespread belief is that crypto-
graphic algorithms’ execution is secure even against system adversaries. Indeed, TPM
devices must provide a more reliable root of trust than the OS by keeping cryptographic
keys secure. Contrary to this belief, we show in Section 5.2 that these implementations
can be vulnerable to remote timing attacks. These attacks reveal cryptographic keys and
render modern applications using the TPM less secure than without the TPM.

5.2 Remote Timing Attacks on TPM

Side-channel attacks are a potential attack vector for secure elements like TPMs. These
attacks exploit the unregulated physical behavior of a computing device to leak secrets.
Processing cryptographic keys may expose secret-dependent signal patterns through
physical phenomena. such as power consumption, electromagnetic emanations, or timing
behavior [54, 229, 275]. A passive adversary who observes such signals can reconstruct
cryptographic keys and break the confidentiality and authenticity of a computing system [85,
236].

– 114 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Timing attacks. Kocher showed that the secret-dependent timing behavior of cryp-
tographic implementations leaks secret keys [209]. Since then, constant-time operation,
or at least secret-independent execution time, has become a standard requirement for
cryptographic implementations. For example, the Common Criteria evaluation of crypto-
graphic modules, typical for standalone TPMs, includes testing timing leakage. Brumley
et al. showed that remote timing attacks could be feasible across networks by mounting
an attack against RSA decryption executed by OpenSSL [54]. Similarly, the OpenSSL
ECDSA implementation was vulnerable to remote timing attacks [53]. The latter also
showed how lattice-based techniques are powerful tools to recover private keys based
on nonce information. Researchers have also demonstrated timing attacks against the
implementation of cryptographic protocols. For example, both the Lucky 13 attack [106]
and Bleichenbacher’s RSA padding oracle attack [237] exploit remote timing. However,
the practicality of such attacks against commodity computers has been questioned due
to noise and low timing resolution [376]. In comparison, we show that such timing
attacks have a more significant impact on TPMs, because of the high-resolution timing
information and their specific threat model of a system-level attacker.

Contribution. In this section, we perform a black-box timing analysis of TPM 2.0
devices deployed on commodity computers. Our analysis reveals that elliptic curve signature
operations on TPMs from various manufacturers are vulnerable to timing leakage, leading
to the private signing key’s recovery. In particular, we discovered timing leakage on an
Intel firmware-based TPM as well as a hardware TPM. As part of this study, We release an
analysis tool that can accurately measure TPM operations’ execution time on commodity
computers. Our advanced tool supports analysis of command response buffer (CRB)
and TPM Interface Specification (TIS) communication interfaces. Later in Chapter 6,
we show how this information allows an attacker to apply lattice techniques to recover
256-bit private keys for ECDSA and ECSchnorr signatures. The TPM 2.0 standard
supports these elliptic curve primitives, ECDSA and ECSchnorr signature schemes, and
the pairing-friendly BN-256 curve used by the ECDAA signature scheme that we found all
of them to be vulnerable. We show that this leakage is significant enough to be exploited
remotely by a network adversary.

Our study shows that these vulnerabilities exist in devices that have been validated
based on FIPS 140-2 Level 2 and Common Criteria (CC) EAL 4+, the highest interna-
tionally accepted assurance level in CC, in a protection profile that explicitly includes
timing side channels. Even certified devices that claim resistance against attacks require
additional scrutiny by the community and industry as we learn more about these attacks.
The vulnerabilities we have uncovered emphasize the difficulty of correctly implementing

– 115 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

known constant-time techniques and show the importance of evolutionary testing and
transparent evaluation of cryptographic implementations.

Experimental setup. We tested Intel fTPM on multiple computers running Intel
Management Engine (ME), and we demonstrate key recovery attacks on these machines.
We also tested multiple machines manufactured with dedicated TPM hardware, as discussed
in Section 5.2.3. All the machines run Ubuntu 16.04 with kernel 4.15.0-43-generic. We
used the tpm2-tools1 and tpm2-tss2 software packages and the default TPM kernel device
driver to interact with the TPM device. Our analysis tool takes advantage of a custom
Linux loadable kernel module (LKM).

5.2.1 Precise Timing Measurement

This section describes our custom timing analysis tool. It shows how a privileged adversary
can exploit the OS kernel to perform accurate timing measurement of the TPM and
discover and exploit timing vulnerabilities in cryptographic implementations running inside
the TPM. We then report the vulnerabilities we discovered related to elliptic curve digital
signatures. Later, in Section 6.2, we combine the knowledge of these vulnerabilities with
the lattice-based cryptanalysis to demonstrate end-to-end key recovery attacks under
various practical threat models3.

The TPM device runs at a much lower frequency than the host CPU, as it is generally
implemented based on a power-constrained platform such as an embedded microcontroller.
We can use the CPU’s cycle count on the Intel CPU as a high-precision time reference
to measure an operation’s execution time inside the TPM device. To perform this
measurement on the host CPU entirely from software while minimizing noise, we need to
make sure that we can read the CPU’s cycle count right before the TPM device starts
executing a security-critical function and after its completion.

The Linux kernel supports device drivers to interact with the TPM that support various
common communication standards. We examined the TPM kernel stack and different
TPM 2.0 devices on commodity computers. Our observations suggest that Intel fTPM
uses the command response buffer (CRB) [333] and dedicated hardware TPM devices
use the TPM Interface Specification (TIS) [332] to communicate with the host CPU.
The Linux TPM device driver implements a push mode of communication with these
interfaces, where the OS sends the user’s request to the device and checks in a loop

1https://github.com/tpm2-software/tpm2-tools commit c66e4f0
2https://github.com/tpm2-software/tpm2-tss commit 443455b
3The source code for our timing analysis tool, lattice attack scripts, and a subset of data set are

available at github.com/VernamGroup/TPM-Fail.

– 116 –

https://github.com/VernamGroup/TPM-Fail

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Field Offset Description

Request 00 Power state transition control
Status 04 Status
Cancel 08 Abort command processing
Start 0c A command is available for processing
Interrupt Control 10 Reserved
Command Size 18 Size of the Command (CMD) Buffer
Command Address 1c Physical address of the CMD Buffer
Response Size 24 Size of the Response (RSP) Buffer
Response Address 28 Physical address of the RSP Buffer

Table 5.1: The CRB control area: The CRB interface does not prescribe a specific access
pattern to the fields of the Control Area. The Start and Status fields are used to start
a TPM command and check the status of the device, respectively.

whether the command has completed the operation or not. As soon as the completed
status is detected, the OS reads the response buffer and returns the user’s results. The
status check for this operation initially waits for 20 milliseconds to perform another status
check, and it doubles the wait time every time the device is pending.

This push model of communication makes the timing measurement of TPM operations
from userspace less efficient and prone to noise. To mitigate the noise, we initially
develop a kernel driver that installs hooks into the CRB and TIS interfaces to modify the
described behavior and measure TPM devices’ timing as accurately as possible. Later, we
move to more realistic settings, i.e., noisy user-level access without root privileges, and
environments where the TPM is accessed remotely over the network.

CRB timing measurement. CRB supports a control area structure to interface
with the host CPU. The control area, as shown in Section 5.2.1, is defined as a
memory-mapped IO (MMIO) on the Linux OS in which the TPM drivers communicate
with the device by reading from or writing to this data structure. We install a hook on
the crb_send procedure responsible for sending a TPM command to the device over
the CRB interface. By default, the driver sets the Start field in the control area after
preparing the command size and address of the command buffer to trigger the execution
of the command by the device. Later on, the device will clear this bit when it completes
the command. Listing 5.1 shows the modification of crb_send, in which the Start
field is checked in a tight loop after trigger. As a result, the crb_send will only return
upon completion of the command, and cycle counts are measured as close to the device
interface as possible.

– 117 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

t = rdtsc();
iowrite32(CRB_START_INVOKE, &g_priv−>regs_t−>ctrl_start);
while((ioread32(&g_priv−>regs_t−>ctrl_start) & CRB_START_INVOKE) ==

CRB_START_INVOKE);
tscrequest[requestcnt++] = rdtsc() − t;

Listing 5.1: CRB Timing Measurement

TIS timing measurement. Similarly, the TIS driver uses an MMIO region to commu-
nicate with the TPM device. The first byte of this mapped region indicates the status of
the device. To measure the TPM’s accurate timing over TIS, we install a hook on the
tpm_tcg_write_bytes procedure. In the modified handler (Listing 5.2), we check if the
write operation issued by the TIS driver stack is related to the trigger for the command
execution, TPM_STS_GO. If this is the case, we check the buffer for TPM_STS_DATA_AVAIL
status, indicating the completion of the command execution, in a tight loop. Similar to
CRB, the cycle counts are measured close to the device interface.

enum tis_status {TPM_STS_GO = 0x20, TPM_STS_DATA_AVAIL = 0x10, ...};
int tpm_tcg_write_bytes_handler(struct tpm_tis_data∗ data, u32 addr, u16 len, u8∗ value){

...
if(len == 1 && ∗value == TPM_STS_GO && TPM_STS(data−>locality) == addr)
{

t = rdtsc();
iowrite8(∗value, phy−>iobase + addr);
while(!(ioread8(phy−>iobase + addr) & TPM_STS_DATA_AVAIL));
tscrequest[requestcnt++] = rdtsc() − t;

} ...

Listing 5.2: TIS Timing Measurement

5.2.2 Timing Analysis of ECDSA

We profiled the timing behavior of the ECDSA signature schemes using the NIST-256p
curve. This average cycle count for Intel fTPM is different for each configuration due
to the CPU’s working frequency, but the average execution time is similar in various
configurations: As shown in Section 5.2.2, we report the average number of CPU cycles
to compute the ECDSA signatures for the platforms mentioned above. For example, we
observe the highest cycle count on the Core i7-7700 machine, a desktop CPU with a
base frequency of 3.60 GHz. We can calculate the average execution time for ECDSA on
Intel fTPM as 4.7 × 108 cycles/3.6 GHz = 130ms. The Intel fTPM device’s working
frequency is relatively slow, facilitating our observation of timing vulnerabilities on such

– 118 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

platforms. As the numbers for the dedicated hardware TPM chips suggest, there is a
significant difference in execution time between various manufacturers’ implementations.
To test the ECDSA signature scheme, we generated a single ECDSA key using the TPM
device and then measured the ECDSA signature generation’s execution time on the device.

Machine CPU Vendor TPM Firmware/Bios ECDSA (Cycle) RSA (Cycle)

NUC 8i7HNK Core i7-8705G Intel PTT (fTPM) NUC BIOS 0053 4.1e8 7.0e8
NUC 7i3BNK Core i3-7100U Intel PTT (fTPM) NUC BIOS 0076 3.2e8 5.4e8
Asus GL502VM Core i7-6700HQ Intel PTT (fTPM) Latest OEM 3.5e8 5.9e8
Asus K501UW Core i7 6500U Intel PTT (fTPM) Latest OEM 3.4e8 5.8e8
Dell XPS 8920 Core i7-7700 Intel PTT (fTPM) Dell BIOS 1.0.4 4.7e8 8.0e8
Dell Precision 5510 Core i5-6440HQ Nuvoton rls NPCT NTC 1.3.2.8 4.9e8 1.8e9
Lenovo T580 Core i7-8650U STMicro ST33TPHF2ESPI STMicro 73.04 8.7e7 9.2e8
NUC 7i7DNKE Core i7-8650U Infineon SLB 9670 NUC BIOS 0062 1.4e8 5.1e8

Table 5.2: Tested Platforms with Intel fTPM or dedicated TPM device.

The security of ECDSA signatures depends on the randomly chosen nonce. The
TPM device must use a robust random number generator to generate this nonce indepen-
dently and randomly for each signing operation to preserve the security of the ECDSA
scheme [260].

Our analysis reveals that Intel fTPM and the dedicated TPM manufactured by
STMicroelectronics leak information about the secret nonce in elliptic curve signature
schemes, leading to efficient recovery of the private key. We will discuss these results in
Section 5.2.3. We also observe non-constant-time behavior by the TPM manufactured by
Infineon, which, as discussed shortly, does not appear to expose an exploitable vulnerability.
Figure 5.2 shows that the TPM manufactured by Nuvoton exhibits constant-time behavior
for ECDSA.

Infineon ECDSA timing behavior. Figure 5.3 shows that the TPM manufactured
by Infineon experiences non-constant-time behavior for ECDSA. We performed a similar
analysis by observing the correlation of LZBs in the nonce and timing (Figure 5.4), and
we did not observe any exploitable bias based on the timings. We also performed other
intuitive tests, such as looking at the correlation between the timing behavior and the
occurrence of 1s. None of our tests were successful in finding time-dependent bias in the
nonce.

RSA timing behavior. Using the methodology described earlier, we also profiled the
timing behavior of the RSA signature scheme. In Section 5.2.2, we report the average
number of CPU cycles to compute RSA signatures for five configurations that support
Intel fTPM and three different configurations with a dedicated TPM chip. For this test,

– 119 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Figure 5.2: Histogram of ECDSA (NIST-256p) signature generation timings a dedicated
Nuvoton TPM as measured on a Core i5-6440HQ machine for 40,000 observations.

Figure 5.3: Histogram of ECDSA (NIST-256p) signature generation timings a dedicated
Infineon TPM as measured on a Core i7-8650U machine for 40,000 observations.

– 120 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.5

1.51
C

P
U

 C
y
c
le

s

10
8

Figure 5.4: Box plot of ECDSA (NIST-256p) signature generation timings a dedicated
Infineon TPM as measured on a Core i7-8650U machine for 40,000 observations.

we generated 40,000 valid 2048-bit RSA keys, programmed the TPM with these keys one
at a time, and measured timings for RSA signing operations on the TPM.

The timing distributions for the dedicated TPM devices manufactured by Infineon
and STMicroelectronics are relatively uniform, as shown in Figure 5.5 and Figure 5.6. In
contrast, the distributions in Figure 5.7 and Figure 5.8 show that RSA signature generation
is not constant time on Intel fTPM and the dedicated Nuvoton TPM; instead, it has a
logarithmic timing distribution that depends on the key bits.

We have previously observed this type of key-dependent timing behavior for the RSA
implementation of Intel’s IPP Cryptography library [368]. Intel IPP implements RSA
based on the Chinese Remainder Theorem (CRT) [90]. The timing variation is due to the
modular inversion operation’s use of the recursive Extended Euclidean Algorithm (EEA)4.
After it computes the signature’s CRT components, the EEA is employed to calculate
the modular inverses needed to reconstruct the final signature. EEA performs modular
reductions using division and recurses according to the Euclidean algorithm until the
remainder is zero. In this case, the observed timing behavior leaks the number of divisions.
Although we observe key-dependent leakage, the EEA algorithm operates serially, and we
may only recover a few initial bits of independent RSA keys. This leakage does not seem

4During disclosure Intel also confirmed that a version of the Intel IPP Cryptography library was
running in Intel fTPM.

– 121 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Figure 5.5: Histogram of RSA-2048 signature generation timings on a dedicated STMi-
croelectronics TPM as measured on a Core i7-8650U machine for 40,000 observations.

Figure 5.6: Histogram of RSA-2048 signature generation timings on a dedicated Infineon
TPM as measured on a Core i7-8650U machine for 40,000 observations.

– 122 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Figure 5.7: Histogram of RSA-2048 signature generation timings on Intel fTPM as
measured on a Core i7-7700 machine for 40,000 observations.

Figure 5.8: Histogram of RSA-2048 signature generation timings on a dedicated Nuvoton
TPM as measured on a Core i5-6440HQ machine for 40,000 observations.

– 123 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

to be sufficient for recovery of the full RSA keys using lattice-based or similar methods
discussed in Section 6.2, which require a larger proportion of known bits of the secret key
for full RSA key recovery [76].

5.2.3 Discovered Vulnerabilities

STMicroelectronics ECDSA scalar multiplication. Figure 5.9 shows an uneven
distribution for the STMicroelectronics TPM where there is more leading zero bits (LZBs)
left side of the distribution. We used the private key d to compute each nonce ki for
each profiled signature (ri, si) by computing ki = s−1

i (H(m) + dri) mod n. Figure 5.10
shows a linear correlation between the execution time and the nonce’s bit length. This
observation shows that the cycle count for each additional zero bit differs by an average
of 2× 105 cycles. This leakage pattern suggests a bit-by-bit scalar point multiplication
implementation that skips the computation for the nonce’s most significant zero bits. As
a result, nonces with more leading zero bits contribute to faster computation.

Figure 5.9: Histogram of ECDSA (NIST-256p) signature generation timings on the
STMicroelectronics TPM as measured on a Core i7-8650U machine for 40,000 observations.

Intel fTPM ECDSA scalar multiplication. Figure 5.11 shows three distinguishable
peaks centered around 4.70, 4.74, and 4.78. Scalar multiplication algorithms to compute
r = (kQ)x are commonly implemented using a fixed-window algorithm that iterates

– 124 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

8.5

8.55

8.6

8.65

8.7

8.75

8.8

8.85
C

P
U

 C
y
c
le

s

10
7

Figure 5.10: Box plot of ECDSA (NIST-256p) signature generation timings by the bit
length of the nonce. We observe a clear linear relationship between the two for the
STMicroelectronics TPM. Each box plot indicates the median and quartiles of the timing
distribution.

window by window over the nonce’s bits to calculate the product kQ of the scalar k
and point Q. In some implementations, the most significant window (MSW) starts at
the first non-zero window of most significant bits of the scalar, which may leak the
number of leading zero bits of the scalar [82]. Concerning the observed leakage behavior
(Figure 5.11), we expect that:

• The slowest signatures clustered in the rightmost peak represent those with full
length k, or in other words, those that have a non-zero most significant window.

• The faster signatures clustered in the second peak may represent signatures computed
using nonces ki that have a full zero MSW but a non-zero second MSW.

• The faster signatures clustered in the third peak may represent signatures computed
using nonces ki that have two full zero MSWs.

• Nonces with three full MSWs of zero bits generated the fastest signatures on the
left peak.

The peaks’ relative sizes suggest that the implementation we tested uses a 4-bit fixed
window (Figure 5.12). This result demonstrates evident leakage of the nonce’s length,

– 125 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Figure 5.11: Histogram of ECDSA (NIST-256p) signature generation timings on Intel
fTPM as measured on a Core i7-7700 machine for 40K observations.

Algorithm 2 Fixed Window Scalar Multiplication
1: T ← (O,P, 2P, . . . , (2w − 1)P)
2: procedure MulPoint(window size w, scalar k represented as (km−1, . . . , k0)2w)
3: R← T [(k)2w[m− 1]]
4: for i← m− 2 to 0 do
5: for j ← 1 to w do
6: R← 2R
7: return R

which we can easily exploit using a lattice attack. To summarize, Algorithm Algorithm 2
matches the observed timing behavior of the scalar multiplication inside the Intel fTPM.
This observation also aligns with previous vulnerabilities [368] which affected earlier
versions of Intel IPP cryptography library [176].

Intel fTPM ECSchnorr scalar multiplication. The ECSchnorr algorithm also uses
a secret nonce and scalar multiplication as the first signature generation operation. We
performed a similar experiment as above, this time using the tpm2_quote command of
the TPM 2.0 device. tpm2_quote generates a signature using the configured key, but
the signature is computed over the PCR registers rather than an arbitrary message. The
timing observations suggest that ECschnorr executes about 1.4 times faster than ECDSA,

– 126 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

4.7

4.75

4.8

4.85
C

P
U

 C
y
c
le

s

10
8

Figure 5.12: Box plot of ECDSA (NIST-256p) signature generation timings depending on
the nonce bit length shows a clear step-wise relationship between the execution time and
the bit length of the nonce for Intel fTPM.

which implies an independent implementation, but one that is still vulnerable to the same
class of timing leakage. The vendor acknowledged this as a separate vulnerability during
the bug bounty program. However, they have only assigned CVE-2019-11090 for all issues.

Intel fTPM BN-256 curve scalar multiplication. As mentioned earlier, TPM 2.0
also supports the pairing friendly BN-256 curve, which is used as part of the ECDAA
signature scheme. To simplify our experiment and verify that ECDAA is also vulnerable, we
configured ECDSA to operate using the BN-256 curve rather than attacking the ECDAA
scheme. The timing observation of ECDSA is almost doubled by using the BN-256 curve.
It is also vulnerable, as it leaks the leading zero bits of the secret nonce.

5.3 Summary

Since TPMs act as a root of trust, most physical TPMs have undergone validation through
FIPS 140-2, which includes physical protection and the more rigorous certification based
on Common Criteria up to levels of EAL 4+. This certification aims to prevent a wide
range of attacks, including physical and side-channel attacks against its cryptographic
capabilities. However, this is the second time that the CC evaluation process has failed

– 127 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Figure 5.13: Histogram of ECSchnorr (NIST-256p) signature generation times on Intel
fTPM as measured on a Core i7-7700 machine for 34,000 observations.

Figure 5.14: Histogram of ECDSA (BN-256) signature generation times on Intel fTPM
as measured on a Core i7-7700 machine for 15,000 observations. Using the BN-256 curve
approximately doubles the execution time of ECDSA, which makes the multiplication
windows even more distinguishable.

– 128 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

Figure 5.15: The layout of the vulnerable TPM chip on the Lenovo T580 mainboard.

to provide expected security guarantees [257]. These findings underscores the need to
reevaluate the CC process. Given the rapid proliferation of side-channel attacks, it would
be advisable to switch to a continuously evolving evaluation process. We also note that
another potentially vulnerable trusted platform is a Hardware Security Module (HSM).
Recent works have already demonstrated that HSMs have more severe vulnerabilities
[189]. We expect HSMs to have similar security issues since most have not been certified
or tested by an external authority.

The vulnerabilities discovered in this paper apply to a wide range of computing
devices. Many PC and laptop manufacturers, including Lenovo, Dell, and HP use the
vulnerable Intel fTPM. Many new laptop manufacturers prefer using the integrated Intel
fTPM rather than adding extra hardware. The Intel fTPM is somewhat comparable to
a hardware TPM since it isolates execution in an isolated 32-bit microcontroller. It is
also widely used by the Intel IoT platform. Our results on the STMicroelectronics TPM,
however, show that even OEMs making a conservative choice and trusting CC-certified
hardware TPMs may fall victim to side-channel key recovery attacks. More specifically,
we demonstrated vulnerabilities in Intel fTPM and STMicroelectronics TPM devices.
We found additional non-constant execution timing leakage in Infineon and Nuvoton
TPMs. We will demonstrate end-to-end attacks to recover ECDSA and ECSchnorr keys by
collecting signature timing data with and without administrative privileges (§6.2). Further,
we will also recover ECDSA keys from an fTPM-based server running StrongSwan VPN
over a noisy network as measured by a client. The fact that a remote attack can extract
keys from a TPM device certified as secure against side-channel leakage underscores

– 129 –

CHAPTER 5. TIMING ANALYSIS OF PHYSICALLY-ISOLATED ELEMENTS

the need to reassess remote attacks on cryptographic implementations, which had been
considered a solved problem.

– 130 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Chapter 6

Microarchitectural Cryptanalysis

This chapter combines the leakage from our proposed timing and attacks with advanced
cryptanalysis techniques to demonstrate end-to-end attacks. Section 6.1 exploits the
leakage from MemJam in several key stealing attacks against block ciphers based on
the S-Box primitive. Section 6.2 is dedicated to lattice-based attacks against ECDSA
implementations. We apply lattice-based cryptanalysis to the timing leakage of the TPM-
Fail vulnerabilities in several threat models. Ultimately, we show that these attacks are
even practical for remote network adversaries. We also show that, in the adversarial OS
threat model of SGX, we can bypass the timing mitigation for such vulnerabilities when
we combine the lattice-based technique with the CopyCat attack. In Section 6.3, we
focus on a different lattice-based attack based on the Coppersmith technique [76] and
reconstruct full RSA keys from partial information of RSA key bits gained from Medusa.
In the end, in Section 6.4, we derive new algorithms based on the branch-on-prune
technique for RSA key extraction. We apply these algorithms to demonstrate end-to-end
single-trace attacks against RSA key generation.

6.1 MemJam-Based Correlation Analysis

Secret-dependent cache activities have motivated researchers and practitioners to protect
cryptographic implementations against cache attacks [50, 340]. The most straightforward
approach for some cryptographic implementations is to minimize the memory footprint of
lookup tables. A single 8-Bit S-Box in the advanced encryption standard (AES) rather
than T-Tables makes cache attacks on AES inefficient in a noisy environment. The
adversary can only distinguish accesses between 4 different cache lines. Combining small
tables with cache state normalization, i.e., loading all table entries into cache before each

– 131 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

operation defeats cache attacks in asynchronous mode, where the adversary is only able
to perform one observation per operation [268].

More advanced side channels such as exploitation of the thread scheduler [133],
cache attack on interrupted execution of Intel Software Guard eXtension (SGX) [245],
performance degradation [18] and leakage of other microarchitectural resources [5, 8]
remind us of the importance of constant-time software implementations. One way to
achieve constant-time memory behavior (against a cache-based adversary) is to adopt
small tables in combination with accessing all cache lines on each lookup [340]. The
overhead would be limited, and the parallelism we can achieve in modern CPUs minimize
this overhead. Another constant-time approach adopted by some public cryptographic
schemes is interleaving the multipliers in memory known as scatter-gather technique [51].

Contribution. Using MemJam, we demonstrate the first key recovery attacks on
constant-time implementations of all symmetric block ciphers supported in the current
Intel Integrated Performance Primitives (Intel IPP) cryptographic library: Triple DES, AES,
and SM4. These implementations are optimized for both security and speed, and they
were a default choice for SGX enclaves. Further, we demonstrate the first intra-cache-line
timing attack on SGX by reproducing the AES key recovery results on an enclave that
performs encryption using the aforementioned constant-time implementation of AES. The
aforementioned constant-time implementation of AES is part of the SGX SDK source code.
Our results show that we can use this side channel to efficiently attack memory-dependent
cryptographic operations and bypass proposed protections.

AES, SM4, 3-DES, and RC4 are the only available symmetric ciphers as part of
Intel’s IPP crypto library [176]. Each implementation has optimizations to hinder cache
attacks. The 3-DES and the AES implementations feature a constant cache profile and
can thus be considered resistant to most microarchitectural attacks, including cache
attacks and high-resolution attacks as described in [245]. MemJam can still extract the
keys from both implementations due to the intra-cache-line spatial resolution, as depicted
in Figure 2.9. We describe the targeted implementations next and the correlation models
we use to steal the secret encryption key.

In these cryptanalysis attacks, we assume that the attacker can measure the time
of victim encryption. The attacker further knows which cryptographic implementation
executes in the victim machine, but she does not need to see the victim’s binary or the
S-Box tables’ offset.

– 132 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

6.1.1 Breaking Pseudo-Constant-Time 3-DES

3-DES. The 3-DES encryption algorithm [255] is an extension of the DES (Data
Encryption Standard) algorithm. While 3-DES was recently deprecated [256], mainly due
to its insufficient block size [35] and the resulting attacks for more massive amounts of
encrypted data, it is still supported or even required in many applications: The latest
EMVCo specification for payment systems permits its usage without further restrictions [98].
Note that EMVCo is an industry consortium managing a payment system standard created
by EuroPay, MasterCard, and Visa (resulting in the EMV trademark). Current members
include American Express, MasterCard, Visa, and UnionPay [97]. The current TLS 1.2
standard contains 3-DES as a legacy cipher [88].

Given three different 56-bit keys K1,K2,K3 and a 64-bit plaintext block M , 3-DES in
Encrypt-Decrypt-Encrypt (EDE) mode calculates the cipher text C as

CISDEF3DESK1,K2,K3(M) = DESK3(DES−1
K2

(DESK1(M))).

DES itself is a Feistel network with 16 rounds. First the plaintext M is permuted
using an initial permutation M ′ISDEF IP(M) and then divided into two 32-bit blocks
M ′ = L0.R0. In round i ∈ {0, . . . , 15} the algorithm then calculates

Li+1ISDEFRi and Ri+1 = Li ⊕ f(Ki, Ri)

for a given round key Ki. The ciphertext C is obtained by applying the inverse of the
initial permutation to the last blocks:

CISDEF IP−1(L16.R16).

The Feistel function f (Figure 6.1) takes a 48-bit round key Ki and the current right
block Ri, and computes its output by doing the following steps:

1. Expand Ri to 48 bits by generating eight 6-bit blocks

Bi,jISDEFRi[4j − 1 mod 32].Ri[4j + 0] . . . Ri[4j + 3].Ri[4j + 4 mod 32]

for j ∈ {0, . . . , 7}.

2. Partition the round key to eight 6-bit blocks Ki = Ki,0 . . . Ki,7 and set the substi-
tution box inputs as

Sin
i,jISDEFBi,j ⊕Ki,j

for each j ∈ {0, . . . , 7}.

– 133 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Figure 6.1: Feistel function (blue) in round i of the DES algorithm: First the current
right block Ri is expanded to 48 bits and XORed with the round key. Then this value is
divided into eight 6-bit blocks, which are substituted by 4-bit blocks using eight different
S-boxes. Finally the result is permuted and XORed with the current left block.

3. Use eight S-boxes S0, . . . S7 to convert the 6-bit inputs into 4-bit outputs:

Sout
i,j ISDEFSj(S

in
i,j)

for each j ∈ {0, . . . , 7}.

4. Permute the S-Box outputs using a round permutation P to acquire the Feistel
function output

outputISDEFP(Sout
i,0 . . . Sout

i,7).

The round keys are generated using a schedule consisting of left shifts and permuta-
tions [255]; we skip a more in-depth explanation here. Decryption works the same as
encryption, except that the decryption operation applies the round keys in reverse order.

Our target, the 3-DES implementation of Intel’s Integrated Performance Primitives
Crypto library, comes in various flavors where each is optimized for a specific instruction
set, but they all have similar cache behavior: The central DES encryption/decryption
function Cipher_DES first applies the initial permutation, which is implemented as a fixed
number of bit operations without any memory accesses. The following 16 rounds are
unrolled; each round has exactly 2 + 16 memory accesses, where the first two memory
accesses load the respective round key. The eight S-box inputs are processed consecutively;
for each input 1) the substitution is performed (by reading from the fixed S-box array),
and then 2) the 4-bit S-Box output is converted into its 32-bit permuted form (using
another lookup table). Finally, these permuted outputs are XORed with each other to

– 134 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

acquire the result of the Feistel function. Each S-box has 26 = 64 1-byte entries and
therefore fits precisely into one cache line; the same applies to the permutation lookup
table, which has 24 = 16 4-byte entries.

This analysis implies that each cache line is accessed once per round, leading to
constant cache behavior that prevents any attacks with cache-line granularity. To obtain
data-dependent timing behavior, we used MemJam to induce false dependencies on the
first four bytes of the first S-box, slowing down the read accesses to this offset. Since
timing behavior slowdown gives us a 4 bytes resolution, we can deduce 4 bits of the
respective S-box input, which corresponds to 4 bits of the round key. A single observation
consists of the resulting ciphertext Ci, and the number of clock cycles Ti the 3-DES
operation takes to execute. Using n of such measurements (with random plaintexts), we
can work ourselves into the cipher, starting from the last round.

Single-round attack on 3-DES. Each cipher text Ci consists of blocks L16 = R15

and R16, where the former directly gives us the eight 6-bit blocks B15,0, . . . B15,7. We
guess the round key block K15,0, and set

• v[i]ISDEF1, if Sin
15,0 = B15,0 ⊕K15,0 = · · 0000

• v[i]ISDEF0, else

for a binary vector v ∈ {0, 1}n.
We lose the two least significant bits (written as “·”) due to the 4-byte resolution of

MemJam. Since the IPP implementation reverses each block’s bit order and round key,
it writes the least significant bits first. Maximizing the correlation

corr(v, T)

between the binary vector v and the clock cycle count vector T over all possible round
key blocks K15,0 then gives us the four key bits K3[2], K3[21], K3[36] and K3[49], since
the slow runs should be nearly uniformly distributed for wrong guesses.

Multi-round attack on 3-DES. To get the missing 52 key bits, we repeat the attack
process in a similar fashion for round 14: The round key block K14,0 that we are interested
in gives us key bits K3[9], K3[28], K3[31] and K3[43], but we also need the last four bits
of block B14,0; for these, we have to partially calculate L15 = R16 ⊕ P(Sout

15,0 . . . S
out
15,7),

which depends on K15,1, K15,4, K15,5 and K15,7, summing up to 4 · 6 = 24 additional key
bits, of which two are already included in the round key K14,0.

Repeating the same process for the thirteenth round, in which we need almost all key
bits from the fifteenth round to calculate the relevant S-boxes in the fourteenth round,

– 135 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

yields another 21 bits of key K3. We derive the remaining five key bits from round 12. To
obtain the remaining keys K1 and K2, we repeat the attack using cipher texts decrypted
with K3.

One can also take additional measurements on the other S-boxes to reduce the
computational effort, yielding up to 32 key bits in round 15. However, this approach also
multiplies the number of measurements, and one still needs to analyze prior rounds to
retrieve the missing 24 key bits, although with greatly reduced time complexity. Overall,
we see a trade-off between the number of measurements and the computation time spent
on the analysis.

3-DES key recovery results on synthetic data. To verify our attack’s correctness,
we first generated some synthetic data, where the timings remain equal to the number of
accesses to the first four bytes of the first S-box. In this noise-free setting, we needed less
than 1000 observations to find 19 bits of the 14th round key, with a correlation of 0.201.

3-DES key recovery results using MemJam. The time needed for a successful
attack primarily depends on the number of measurements and the number of simultaneously
guessed bits. The attacks on round 15 (4 key bits) and 12 (5 key bits) are negligible,
but round 14 (26 key bits) needs 226n steps and round 13 (21 key bits) 221n steps; this
corresponds to tens of hours of computation time per DES key. While this is significantly
less than guessing all 56 bits at once, reducing the number of measurements is still
desirable. Figure 6.2 shows the correlations for different measurement counts when
guessing 14 key bits in round 14. Experiments showed that 250000-300000 measurements
suffice to recover all three keys.

6.1.2 Breaking Pseudo-Constant-Time AES

Advanced Encryption Standard (AES). AES is a cipher based on a substitution
permutation network (SPN) with ten rounds supporting 128-bit blocks, and 128/192/256-
bit keys [81]. The SubBytes is a security-critical operation, and the straightforward way
to implement AES SubBytes operation efficiently in software is to use lookup tables.
SubBytes operates on each byte of cipher state, and it maps an 8-bit input to an 8-bit
output using a non-linear function. The software can avoid recomputation of this mapping
using a precomputed 256-bytes lookup table known as S-Box.

There are efficient implementations using T-Tables that output 32-bit states and
combine SubBytes and MixColumns operations. T-Table implementations are highly
vulnerable to cache attacks. During AES rounds, a state table is initiated with the
plaintext, and it holds the intermediate state of the cipher. Round keys are mixed with

– 136 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

20000 40000 70000 100000 200000 300000 500000 1000000

Measurements

-0.01

0

0.01

0.02

0.03

0.04

C
o

r
r
e

la
ti

o
n

Figure 6.2: The hundred highest and lowest timing correlations when guessing 14 key bits
in round 14, depending on the amount of measurements (logarithmic scale). The correct
key (blue) becomes distinguishable at around 250000 measurements.

states, which are critical S-Box inputs and the main source of leakage. Hence, even an
adversary who can partially determine which entry of the S-Box is accessed can learn
some critical information.

Among the efforts to make AES implementations more secure against cache attacks,
Safe2Encrypt_RIJ128 function from Intel IPP cryptographic library is noteworthy. This
implementation is the only production-level AES software implementation that features
real cache constant-time behavior and does not utilize hardware extensions such as AES-NI
or SSSE3 instruction sets. This implementation is also part of the Linux SGX SDK [162],
and one can use it for production code if they compile the SDK from scratch, i.e., it does
not use prebuilt binaries. We verified the match between the Intel IPP binary and SGX
SDK source code implementation through reverse engineering.

This implementation follows a straightforward direction: (1) it implements AES using
256 byte S-Box lookups without any optimization such as T-Tables. (2) Instead of
accessing a single byte of memory on each S-Box lookup, it fetches four values from
the same vertical column of 4 different cache lines. It saves them to a local cache
aligned buffer. Finally, (3) It performs the S-Box replacement by picking the correct
S-Box entry from the local buffer. This implementation is depicted in Figure 6.3. This
implementation protects AES against any kind of cache attacks, as the attacker sees a
constant cache access pattern: The S-Box table only occupies four cache lines, and each
SubBytes operation accesses all of them sequentially. This implementation executes in
less than 2000 cycles on a recent laptop CPU. This performance is reasonable for many
cryptographic applications, and it provides full protection against cache attacks, even if
the attacker can interrupt the execution pipeline.

– 137 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Figure 6.3: Constant-Time table lookup used by Intel IPP: Each lookup preloads 4 values
to a cache aligned buffer, thus it accesses all the 4 S-Box cache lines. The actual output
will be chosen from the buffer using the high address bits.

Based on the 4-byte granular leakage channel from MemJam, and AES’s design,
we can create a simple correlation model to attack this implementation. The accessed
table index of the last round for a given ciphertext byte c and key byte k is given as
index = S−1(c⊕k). We define matrixA for the access profile where each row corresponds
to a known ciphertext, and each column indicates the number of accesses when index < 4.
While we assume that the attacker causes slowdowns to the first 4-byte block of S-Box,
we define matrix L for leakage where each row corresponds to a known ciphertext, and
each column indicates the victim’s encryption time. Then, we define our correlation attack
as the correlation between A and L, in which the higher the number of accesses, the
higher the running time. Our results will verify that correlation is high, even though it has
dummy accesses to the monitored block. These can be ignored as noise, slightly reducing
our maximum achievable correlation.

AES key recovery results on synthetic data. We first verified our correlation
model’s correctness on synthetic data using a noise-free leakage (generated by PIN [166]).
For each of the 16 key bytes using a vector that precisely matches the number of accesses
to the targeted block of S-Box for different ciphertexts, all the correct key bytes will have
the highest correlation after 32,000 observations with the best and worst correlations of
0.046 and 0.029 respectively.

AES key recovery results using MemJam. Relying on the verification of Synthetic
Data, we plugged in the real attack data vector, which consists of pairs of ciphertext
and time measured through repeated encryption of unknown data blocks. Results on

– 138 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

0 50 100 150 200 250

Key Candidates

0

0.005

0.01

0.015

0.02

0.025

O
b

s
e

rv
e

d
 C

o
rr

e
la

ti
o

n
s

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

E
x

p
e

c
te

d
 C

o
rr

e
la

ti
o

n
s

Figure 6.4: Linearity of the number of accesses to the first block and the execution time of
AES: The synthetic correlation and MemJam observed correlation show similar behavior
with a slight difference due to the added noise.

AES show that we can effectively exploit the timing information and break the so-called
constant-time implementation. The AES encryption function’s execution takes about
1700 and 2000 cycles without an active thread on the logical CPU pair. The target AES
implementation performs 640 memory accesses to the S-Box, including dummy accesses.
If the spy thread frequently writes to any address that collides with an S-Box block offset,
the time will increase to a range between 2000 and 2300 cycles. The observed variation
in this range correlates with the number of accesses to that block.

Figure 6.4 shows the linear correlation between the synthetic data and real attack
data for one key byte after 2 million observations. Most of the possible key candidates
for a target key byte have a matching peak and hill between the two observations. The
highest correlation points in both cases declare the correct key byte (0.038 red, 0.014
blue). The quantitative difference is due to the expected noise in the real measurements.

Figure 6.6 shows the correlation of 4 different key bytes after 2 million observations,
with the correct key bytes having the highest correlations. Our repeated experiments with
different keys and ciphertexts show that 15 correct key bytes have the highest correlation
ranks. Only the byte at index 15 has a high grade but not necessarily the most elevated.
Figure 6.7 shows the key ranks over the number of observations. Key byte ranks take
values between 1 and 256, where one means that the correct key byte is the most likely
one. As it is shown, after only 200,000 observations, the attack reduces the keyspace to a
computationally feasible keyspace[120]. After 2 million observations, we recovered all key
bytes except one. For most of the key bytes, only tens of thousands of measurements are
sufficient to recover the correct key byte (Figure 6.5). The non-optimized implementation
of this attack processes 2 million observations in 5 minutes.

– 139 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

0 1 2 3 4 5 6 7 8 9 10

Measurements 10
5

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

C
o

r
r
e

la
ti

o
n

Figure 6.5: The timing correlations for guessing one of the AES key bytes, depending on
the amount of measurements. The correct key (blue) becomes distinguishable at around
65000 measurements.

6.1.3 Key Recovery from Cache-Protected SM4

SM4. SM4 (formerly SMS4) is a block cipher standardized by the Chinese government
and the standard encryption for Wireless LAN Wired Authentication and Privacy Infras-
tructure (WAPI) [89]. Several patents investigated by Intel highlight the importance of
SM4 [131, 375, 382]. SM4 features an unbalanced Feistel structure and supports 128-bit
blocks and keys. SM4 is known to be secure, and no relevant cryptanalytic attacks exist
for the cipher. Figure 6.8 shows a schematic of one round of SM4. T1-T4 are 4× 32-bit
state variables of SM4. Each round mixes the last three state variables and a 32-bit round
key, and a non-linear S-Box value will replace each byte of the output. After the non-linear
layer, the diffusion layer combines the 32-bit output of S-Boxes x using the linear function
L. The production of L is then mixed with the first 32-bit state variable to generate a
new random 32-bit state value. The same operation is repeated for 32 rounds, and each
time a new 32-bit state is generated as the next round T4 state. The next round treats
the current T2, T3, T4 as T1, T2, and T3. The final 16 bytes of the entire state after
the last round produce the ciphertext. SM4 Key schedule produces 32 × 32-bit round
keys from a 128-bit key. Since the key schedule is reversible, recovering four repeated
round keys provides enough entropy to reproduce the cipher key.

All the SM4 operations except the S-Box lookup have 32-bit word sizes. Hence,
SM4 implementation is both efficient and straightforward on modern architectures. We
chose the function cpSMS4_Cipher from Intel IPP Cryptography library. Our target is
the straightforward implementation of the cipher with the addition of S-Box cache state
normalization. We recovered this implementation through reverse engineering of Intel IPP
binaries. The implementation preloads four values from different cache lines of S-Box
before the first round, and it mixes them with some dummy variables, forcing the CPU

– 140 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

0 50 100 150 200 250

Key Candidates

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

C
o

rr
e
la

ti
o

n

 Key Byte 1

 Key Byte 5

 Key Byte 7

 Key Byte 9

Figure 6.6: Correlations for 4 key bytes using 2 million observations. Correct key byte
candidates have the highest correlations.

to fill the relevant cache lines with the S-Box table. This cache prefetching mechanism
protects SM4 against asynchronous cache attacks. Our experimental setup runs in about
700 cycles, which informs us that this implementation maintains a high speed while secure
against asynchronous attacks. Interrupted attacks that leak intermediate states would not
be as simple since the interruption need to happen faster than 700 cycles. We will further
discuss the difficulty of correlating any cache-granular information, even if we assume the
adversary can interrupt the encryption and perform some intermediate observations.

x32 = c1 ⊕ c2 ⊕ c3 ⊕ k32

d2 = c1, d3 = c2, d4 = c3

d1 = L(s(x1
32), s(x

2
32), s(x

3
32), s(x

4
32))⊕ c4

x31 = d1 ⊕ d2 ⊕ d3 ⊕ k31

e2 = d1, e3 = d2, e4 = d3

e1 = L(s(x1
31), s(x

2
31), s(x

3
31), s(x

4
31))⊕ d4r

x30 = e1 ⊕ e2 ⊕ e3 ⊕ k30

f2 = e1, f3 = e2, f4 = e3

f1 = L(s(x1
30), s(x

2
30), s(x

3
30), s(x

4
30))⊕ e4

x29 = f1 ⊕ f2 ⊕ f3 ⊕ k29

g2 = f1, g3 = f2, g4 = f3

g1 = L(s(x1
29), s(x

2
29), s(x

3
29), s(x

4
29))⊕ f4

x28 = g1 ⊕ g2 ⊕ g3 ⊕ k28

(6.1)

Single-round attack on SM4. We define c1, c2, c3, c4 as the four 32-bit words of a
ciphertext and kr as the secret round key for round r. We recursively follow the cipher
structure from the last round with our ciphertext words as inputs and write the last five
rounds’ relations as Equation 6.1. In each round, xir is the S-Box index, and i is the byte

– 141 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

11
00

00
0

12
00

00
0

13
00

00
0

14
00

00
0

15
00

00
0

16
00

00
0

17
00

00
0

18
00

00
0

19
00

00
0

20
00

00
0

Observations

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

K
e
y
 B

y
te

s
 (

R
a
n
k
s
)

1

1
1
1
3
1
4
1

69
1

15
7
6

24
15

1
34
1
1
1
3
1
6
1
3
3
8
1
9
5
1

1
42
1
1
1
1
1
3
1
2
1

13
1
7
2
1

1
12
1
1
1
1
1
1
1
1
2
1
1
4
4
1

1
3
1
1
1
1
1
1
1
2
3
1
1
2
3
1

1
3
1
1
1
1
1
1
1
1
1
1
1
8
7
1

1
1
1
1
1
1
1
1
1
1
1
1
1
4

12
1

1
1
1
1
1
1
1
1
1
1
1
1
1
3

26
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

26
1

1
1
1
1
1
1
1
1
1
1
1
1
1
3

43
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

43
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

57
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

36
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

14
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

11
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

13
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

21
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

16
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

12
1

99

20

40

60

80

Figure 6.7: The rank for correct key bytes are reduced with more observation. After 2
million observations, 15 out of 16 key bytes are recovered.

Figure 6.8: SM4 Feistel Structure: In each round, the last three words from the state
buffer and the round key will be added. An S-Box lookup will replace each byte of the
output. The function L performs a linear bit permutation.

offset of the 32-bit word xr. With a similar approach to the attack on AES, we define
matrix A for the access profile, where each row corresponds to a known ciphertext, and
each column indicates the number of accesses when xir < 4. Then we define the matrix L
for the observed timing leakage and the correlation between A and L similar to the AES
attack. In contrast, S-Box indices in the AES attack are defined based on a non-linear
inverse S-Box operation of key and ciphertext, which eventually maps all possible key
candidates. In SM4, the index xir is defined before any non-linear operation. As a result,
an attack capable of distinguishing 4 out of 256 S-Box entries reveals only 6 bits per key
byte. In the mentioned relations, performing the attack using this model on xi32, recovers
the six most significant bits of each key byte i for the last round key (Total of 24 out of
the 32 bits).

– 142 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Multi-round attack on SM4. We can use the relationship for round 31 to recover
6-bit key candidates of round 31 and the remaining unknown 8 bits of entropy for round
32. This observation is due to the linear property of function L and the newly created
state variables’ recursive nature. After the attack on round 32, we only have certainty
about 24 bits of the new state variable d1. Still, this information will be propagated as
the input to round 31. The next round of attack for a key byte of round 31 needs more
computation to process an 8 bit of unknown key and 8 bit of unknown state (total of 16
bit), but this is computationally feasible. We recover the 8-bit key from round 32 with
the highest correlation by attacking the S-Box indices in round 31. We recursively applied
this model to each round resulting a correlation attack with the following steps, which
gives us enough entropy to recover the key:

1. x32 → 24 bits of k32.

2. x31 → 24 bits of k31 + 8 bits of k32

3. x30 → 24 bits of k30 + 8 bits of k31

4. x29 → 24 bits of k29 + 8 bits of k30

5. x28 → 24 bits of k28 + 8 bits of k29

6. Recover the key from k32, k31, k30, k29

SM4 key recovery results on synthetic data. Our noise-free synthetic data shows
that 3000 observations are enough to find all correct 6-bit and 8-bit round key candidates
with the highest correlations. Even in an interrupted cache attack or without cache
protection, targeting this implementation using cache-granular information would be much
more challenging and inefficient due to the lack of intra-cache-line resolution. If we only
distinguish the 64-byte cache lines out of a 256-byte S-Box, we only learn 4× 2-bit (total
of 8 bits) out of 32-bit round keys, and on each round, we need to solve 8 bits + 24
bits of uncertainty. Although solving 32-bit of uncertainty sounds possible for noise-free
data, it is computationally much harder in a noisy practical setting. Our intra-cache-line
leakage can exploit SM4 efficiently in a known-ciphertext scenario, while the best efficient
cache attack on SM4 requires chosen plaintexts [262].

SM4 key recovery results using MemJam. The results on SM4 show even more
effective key recovery against this implementation compared to AES. Figure 6.9 shows the
correlation rate over measurements for one key byte in the first round of attack, which

– 143 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

0 0.5 1 1.5 2 2.5 3 3.5

Measurements 10
4

-0.05

0

0.05

C
o

r
r
e
la

ti
o

n

Figure 6.9: The timing correlations for guessing one of the SM4 key bytes in a single
round attack, depending on the number of measurements. The correct key (blue) becomes
distinguishable at around 13000 measurements.

0 10 20 30 40 50 60

6-bit Round Candidates

-0.02

0

0.02

0.04

0.06

C
o

r
r
e

la
ti

o
n

Figure 6.10: Correlations for SM4 6-bit keys of the last 4 32-bit round key recovered
through 5 rounds of attack using 40,000 observations.

13000 measurements are sufficient to distinguish the correct 6-bit round key (blue) for
this key byte.

Figure 6.10 shows the correlation for 6-bit round keys after five rounds of repeated
attack, and we see the correlation for 12-bit key candidates in Figure 6.11. Our attack
expects the correctness of key candidates for each round of attack before proceeding to
the next round. This property is due to the recursive structure of SM4. In our experiment
using real measurement data, we have noticed that 40,000 observations are sufficient
to assure correct key candidates with the highest correlations. Our implementation of
the attack can recover the correct 6-bit and 8-bit keys, and it takes about 5 minutes to
recover the cipher key.

In Figure 6.11, we plotted the accumulated per byte correlations for all 8-bit candidates
within each round of attack. During the computation of 6-bit candidates, the 8-bit

– 144 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

0 50 100 150 200 250

8-bit Round Candidates

0.05

0.1

0.15

0.2

0.25

C
o

r
r
e

la
ti

o
n

Figure 6.11: The accumulated correlations for SM4 8-bit keys after 5 rounds using 40,000
observations. Each correct candidate has the highest correlation.

candidates relate to 4 different state bytes. This accumulation significantly increases
the result, and the correct 8-bit key candidates have a very high aggregated correlation
compared to the 6-bit candidates.

6.1.4 MemJam AES Key Recovery Results in SGX

Indeed, Intel ensures constant cache-line accesses for its AES implementation, making it
resistant to all previously known microarchitectural attacks in SGX. In this section, we
verify that MemJam is also applicable to SGX enclaves, as there are no fundamental
microarchitectural changes to resist against false memory dependencies. We repeat the
key recovery results against Intel’s constant-time AES implementation after moving it
into an SGX enclave. The results verify the exploitability of intra-cache-line channels
against SGX secure enclaves. This attack can be reproduced straightforwardly. The only
difference is a slower key recovery due to the increased measurement noise resulting from
the enclave context switch.

SGX enclave experimental setup and assumptions. Following the threat model
of CacheZoom [218, 245], we assume that the system adversary has control over various
OS resources. Please note that the goal of SGX is to thwart the threat of such adversaries.
The adversary uses its OS-level privileges to decrease the setup noise: We isolate one
of the physical cores from the rest of the running tasks and dedicate its logical CPUs
to MemJam write conflict thread and the victim enclave. We further disable all the
non-maskable interrupts on the target physical core and configure the CPU power and
frequency scaling to maintain a constant frequency. We assume that the adversary can
measure an enclave interface’s execution time that performs encryption, and the enclave
interface only returns the ciphertext to the insecure environment.

– 145 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Both plaintexts and the secret encryption key are generated at runtime using RDRAND
instruction, and they never leave the secure runtime environment of the SGX enclave.
SGX does not allow the RDTSC instruction inside an enclave. The attacker uses it right
before the call to the enclave interface and again right after the enclave exit. As a result,
the entire execution of the enclave interface, including the AES encryption, is measured.
As before, an active thread causing read-after-write conflicts to the first four bytes of the
AES S-Box is executed on the neighboring virtual CPU of the SGX thread.

Execution of the same AES encryption function as Section 6.1.2 inside an SGX enclave
interface takes an average of 14,600 cycles with an active thread causing read-after-write
conflicts to the first four bytes of the AES S-Box. The additional overhead is caused
by the enclave context switch, which significantly increases the timing channel’s noise
due to the variable timing behavior. This experiment shows a more practical timing
behavior where adversaries cannot time the actual encryption operation, and they have
to measure the time for a batch of operations. This observation not only shows that
SGX is vulnerable to the MemJam attack, but it also demonstrates that attackMemJam
is applicable in a realistic scenario. Figure 6.12 shows the key correlation results using
50 million timed encryptions in SGX, collected in 10 different time frames. We filtered
outliers, i.e., measurements with high noise, only considering samples in the range of
2000 cycles of the mean. Among the 50 million samples, 93% pass the filtering, and
we only calculated the correlations for the remaining traces. Figure 6.13 shows that we
can successfully recover 14 out of 16 key bytes, revealing sufficient information for key
recovery after 20 million observations.

0 50 100 150 200 250

Key Candidates

-1

0

1

2

3

4

C
o

rr
e
la

ti
o

n
s

10
-3

 Key Byte 1

 Key Byte 2

 Key Byte 3

 Key Byte 4

 Key Byte 5

 Key Byte 6

Figure 6.12: Correlations for 6 key bytes using 5 million observations. All of the correct
candidates have the highest correlations.

– 146 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

5 M
10 M

15 M
20 M

25 M
30 M

35 M
40 M

45 M
46.8 M

Observations

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

K
e
y
 B

y
te

s
 (

R
a
n
k
s
)

3

1
1
3

4
5

17
30

1

16
1
1
3

59
5
4

71
3
9

39

1
25
2
1
1
1

11
1

11
37
35
3
9

51
1

1
5
1
1
1
1
3
2
4

13
29
4
1

66
1

1
1
1
1
1
1
2
1
1
2

40
1
1

47
1

1
1
1
1
1
1
1
1
1
1

42
4
1

43
2

1
1
1
1
1
1
1
1
1
3

42
5
1

46
40
1

1
1
1
1
1
1
1
1
1
2

25
3
1

45
50
1

1
1
1
1
1
1
1
1
1
3
2
2
1

43

1

1
1
1
1
1
1
1
1
1
3
1
2
1

54

1

83
85

99

92
99

81
99
99

79

98

99
85

99 95 84 76
81 83

20

40

60

80

Figure 6.13: The rank for correct key bytes with respect to the number of observations.
Using the entire data set, after filtering the outliers, we can recover 14 out of 16 key
bytes.

These results show that even cryptographic libraries designed by experts who are
fully aware of recent attacks and the target device’s leakage behavior may fail at writing
non-exploitable code. Modern microarchitectures are so complicated that assumptions
such as constant cache line profiles result in constant-time implementations that are
seemingly impossible to fulfill.

6.1.5 Discussion on MemJam Cryptanalysis

An adversary who performs the MemJam attack also does not need to know about the
offset of an S-Box in the binary since she can simply scan the 10-bits address entropy by
introducing conflicts to different offsets and measuring the timing of the victim. In such
a scenario, we assume that the S-Box table is aligned with the cache line size since an
unaligned S-Box in memory is already vulnerable to cache attacks [181, 267]. During the
processing of uniformly random input, each S-Box operation of Safe2Encrypt_RIJ128
accesses the first-word column of the table with a probability of 1/16. Among 160 S-Box
operations, an average of 10 memory accesses to the first S-Box is likely. While an
attacker is causing RaW conflicts on increasing offsets, they can locate the S-Box offset
as soon as they see a timing behavior. This understanding is essential for obfuscated
binaries or scenarios where the offset of the S-Box is unknown.

As shown in Section 6.1.5, all block cipher implementations of IPP have at least one
vulnerable variant. In cases where an implementation relies on the AES-NI instruction
set (or SSSE3, respectively), the library falls back to the basic version at runtime if

– 147 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Implementation Function Name l9/n0/y8/k0/e9 m7/mx n8 SGX SDK

DES Constant-Time Cipher_DES N/A
AES-NI Encrypt_RIJ128_AES_NI × × (prebuilt)
AES Bitsliced SafeEncrypt_RIJ128 × (prebuilt)
AES Constant-Time Safe2Encrypt_RIJ128 × × (source)
SM4 Bitsliced & AES-NI cpSMS4_ECB_aesni × × N/A
SM4 Cache Normalized cpSMS4_Cipher N/A

Table 6.1: DES, SM4 and AES implementations in all variants of Intel IPP library version
2018 [170]. The linker merges these variants, and each variant optimizes for a different
generation of the Intel instruction set [159]. Developers can statically link specific variants
with single CPU static linking mode [170].

the instruction set extensions are not available. e The usability of this depends on
the compilation and runtime configuration. Developers are allowed to link to a riskier
variant [159] statically, and they need to ensure not to use the vulnerable versions during
linking. Developers should avoid these ciphers even when the hardware does not support
hardware extension, e.g., Core and Nehalem do not support AES-NI; also, AES-NI can
be disabled in some BIOS. For 3-DES, IPP gives only one implementation option: the
vulnerable one studied in this work. Thus, for applications that demand the use of 3-DES
(and there are still many such applications, as discussed in Section 6.1.1), there is no
secure alternative available in IPP. This finding highlights that current hardware support for
cryptographic primitives is restricted, and if any cipher without explicit hardware support
is required, this limitation may endanger the provided security. MemJam is another
piece of evidence that modern microarchitectures are too complicated, and constant-time
implementations cannot only be trusted, as assumptions about the underlying system
often turn out to be wrong.

6.2 Lattice Attacks on ECDSA

This section provides an overview of the digital signature algorithm (DSA) and its
variant, elliptic-curve DSA (ECDSA). Then we discuss the hidden number problem
and its application in the side-channel analysis of DSA and ECDSA. We demonstrate
microarchitectural cryptanalysis of several deployed ECDSA implementations, deployed by
TPMs and cryptographic libraries, after this background information.

– 148 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

6.2.1 Digital Signature Algorithms

Authentication and remote attestation for secure elements and TEEs extensively use such
signature schemes [174]. Moreover, TEEs like Intel SGX can promise trusted execution of
these algorithms for a wide range of applications such as trusted key management [109]
and private contact discovery [314]. We provide an overview of Schnorr-type signing [306].

DSA. In the DSA [112], the public parameters are a prime p, another prime divisor n
of p − 1, and the group generator g. The private key x is chosen randomly such that
1 < x < n− 1, and the public key is y = gx(modp). To sign a message hash h:

1. Choose a random secret k such that 1 < k < n− 1,
2. Compute r = gk mod p mod n,
3. Compute s = k−1(h+ r · x) mod n.

(r, s) is the output signature pair. The verification process uses the public key y to verify
if the hash r and s are valid signature pairs for h. Since verification entirely relies on the
public key and parameters, its resistance against side channels is not relevant; hence, we
omit signature verification throughout this section.

ElGamal. In the ElGamal signature scheme, an alternative to DSA, the first signature
pair r is computed similarly, but the second pair is computed as s = k−1(h−r·x) mod (p−
1).

ECDSA. The Elliptic Curve Digital Signature Algorithm (ECDSA) [191] is an elliptic
curve variant of the Digital Signature Algorithm (DSA) [112] in which the prime subgroup
in DSA is replaced by a group of points on an elliptic curve over a finite field. The public
parameters are an elliptic curve E with scalar multiplication operation ×, a point G on
the curve, and the integer order n of G over E. The secret key d is a random integer
satisfying 1 < d < n− 1, and the public key is Q = d×G. Signature generation for a
message hash h is as follows:

1. Choose a random secret k such that 1 < k < n− 1,
2. Compute (x, y) = k ×G and r = x mod n,
3. Compute s = k−1(h+ r · d) mod n.

(r, s) is the output signature pair.

ECSchnorr. The Schnorr digital signature scheme [293], similar to DSA, can support
elliptic curves. Among multiple different standards for Elliptic Curve Schnorr (ECSchnorr),
the TPM 2.0 uses the ISO/IEC 14888-3 standard. The key generation for ECSchnorr

– 149 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

is similar to ECDSA, but the signing algorithm is slightly different: To sign a message
m ∈ {0, 1}∗,

1. Choose an ephemeral key k ∈ Z∗n.

2. Compute the elliptic curve point kG and compute the x coordinate xR = (kQ)x.

3. Compute r = H(xR ||m) mod n.

4. Compute s = (k + dr) mod n.

The signature pair is (r, s).
In practice, elliptic curve signature schemes are implemented for a small set of standard

curves, which have been vetted for security. The targeted elliptic curves that we will
discuss in this chapter are the p-256 [112] and bn-256 [27] curves, as supported by
TPM 2.0. Applications can use the bn-256 with ECDSA and ECSchnorr schemes, but
it is essential for the elliptic-curve direct anonymous attestation (ECDAA) scheme since
ECDAA requires a pairing-friendly curve like bn-256.

In DSA, ElGamal, ECDSA, and ECSchnorr, it is critical for k to be uniquely chosen
for each signature generation and to remain secret. Exposing one instance of k for a
known signature results in a simple key recovery: d = r−1(s · k − h) mod n. Since k is
an ephemeral value, a noisy side-channel attack against k cannot reduce the sampling
noise using multiple runs of the attack. However, as discussed in this section, lattice
attacks can recover the signing key from partial knowledge of k for many signatures.
In Section 6.4.2 and Section 6.4.4, we show that we can recover the entire ephemeral k
deterministically in a single trace of the computation of the modular inverse k−1 mod n.
Single-trace attacks on signature generation illustrate vulnerabilities even in scenarios
where an attacker cannot trigger multiple signature generation operations or only collect
a single trace.

6.2.2 Hidden Number Problem and Lattices

Boneh and Venkatesan [45] formulated the hidden number problem (HNP) as the following:
Let α ∈ Z∗p be a secret integer. In the hidden number problem, one is given a prime p,
several uniformly and independently randomly chosen integers ti in Z∗p, and also integers
ui that represent the l most significant bits of αti mod p. The ti and ui satisfy the
property |αti − ui| < p/2l. Boneh and Venkatesan showed how to recover the secret
integer α in polynomial time using lattice-based algorithms with probability greater than
1/2, if the attacker learns enough samples from the l most significant bits of αti mod p.

– 150 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Private key recovery using partial information. Key recovery from DSA and
ECDSA with partial knowledge of the nonce k can be solved efficiently using lat-
tices [45, 260]. These attacks apply to the case when a few bits are leaked about
the nonce for multiple signatures, and the adversary can sample many signatures. Re-
searchers have applied lattice-based algorithms for the HNP to attack the DSA and
ECDSA signing algorithms with partially known nonces [151, 259, 260, 285]. As a direct
consequence, implementation of these signature algorithms in standard cryptographic
libraries is vulnerable when the implementation leaks partial information about the secret
nonce through side channels [31, 105, 270, 288]. Garcia et al. [113] demonstrate an
attack that recovers the sequence of divisions and subtractions from the binary extended
Euclidean algorithm (BEEA) for modular inversion. They observe that this sequence
leaks some least significant bits of k and apply a lattice-based key recovery algorithm.
Lattice attacks can also solve similar HNP instances to recover private keys for other
signature schemes such as EPID in the presence of side-channel vulnerabilities [82]. Ronen
et al. [286] connected padding oracle attacks to the HNP. Even subtle implementation
flaws that leak the bit length of k are sufficient for multi-trace lattice-based key recov-
ery [53, 82, 248]. In these cases, while the algorithm was implemented with enough care
to avoid secret-dependent conditional statements, they leak the bit length by skipping
the most significant zero bits of k. In Section 6.2.5, we exploit a countermeasure against
this attack to precisely leak the nonce bitlength and recover the secret key using a lattice
attack.

There are other variants of the HNP, such as the modular inversion hidden number
problem [44] and the extended hidden number problem [147]. We focus on the original HNP,
where the attacker learns information about the nonce’s most significant bits. A second
family of algorithms for solving the HNP is based on Fourier analysis. Bleichenbacher’s
algorithm [39] was the first to make this connection. Bleichenbacher’s Fourier analysis
techniques can be augmented with lattice reduction for the first stage of the attack, as
shown by De Mulder et al. [83]. Bleichenbacher’s original algorithm targets a scenario
where each signature only leaks a tiny amount of information. In this scenario, the
attacker can query for a vast number of signatures. The De Mulder variant requires fewer
signatures, but the above lattice techniques are more efficient in this setting. We use
lattice attacks because they are more efficient for the amount of side-channel information
we obtain.

Lattice construction. The hidden number problem lattice attacks allow us to recover
ECDSA nonces and private keys as long as the nonces are short. Since the nonces are
uniformly selected from Z∗n, the ki will follow an exponentially decreasing distribution of
lengths, i.e., half will have a zero in the most significant bit (MSB), a quarter will have

– 151 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

the most significant two bits zero, etc. We will refer to this event as two leading zero bits
or 2 LZBs for short. A randomly selected set of nonces ki will not be likely to be short,
and the lattice attack will not be expected to work. This gap is where side channels prove
invaluable to the attacker. Given some side information that reveals the number of MSBs
of ki that are zero, one can filter out the signatures with short nonces, yielding a set of
signatures where the ki are all short [45, 376]. To avoid this vulnerability, constant-time
implementations of DSA and ECDSA schemes is crucial.

To mount an attack on ECDSA, we follow the approach of Howgrave-Graham and
Smart [151] and Boneh and Venkatesan [45] in reducing ECDSA key recovery to solving
the Closest Vector Problem (CVP) in a particular lattice. We can then follow the strategy
outlined by Benger et al. [31] and embed this lattice into a slightly larger lattice in which
the desired vector will appear as a short vector that can be found using standard lattice
basis reduction algorithms like LLL [220] or BKZ [292]. Our first step is to define the
target lattice from ECDSA signature samples ri, si and mi. Consider a set of t signature
samples si = k−1

i (H(mi) + dri) mod n; rearranging slightly, these define a set of linear
relations

ki − s−1
i rid− s−1

i H(mi) ≡ 0 mod n

where the nonces ki and the secret key d are unknowns; we thus have t linear equations in
t+ 1 unknowns. Let Ai = −s−1

i ri mod n and Bi = −s−1
i H(mi) mod n; we thus rewrite

our t relations in the form ki + Aid+Bi = 0 mod n. Let K be an upper bound on the
ki. Now we consider the lattice generated by integer linear combinations of the rows of
the following basis matrix

M =



n

n
. . .

n

A1 A2 . . . At K/n

B1 B2 . . . Bt K


(6.2)

The first t columns correspond to each of the t relations we have generated, with the
modulus n on the diagonal of each of these columns; the weighting factors of K/n and K
in the last two columns have been chosen so that the desired short vector containing the
secret key will have coefficients all of approximately the same (small) size, and therefore
be more likely to be found than an unbalanced vector. In particular, this lattice has been
constructed so that the vector vk = (k1, k2, . . . , kt, Kα/n,K) is a relatively short vector
in this lattice; by construction, it is d times the second-to-last row vector of the basis, plus

– 152 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

the last vector, with the appropriate integer multiple of n subtracted from each column
corresponding to the modular reduction in each of the t relations. If this vector vk can be
found, the secret key d can be recovered from the second-to-last coefficient of this vector.

Because this target vector vk is short, we hope that a lattice reduction algorithm like
LLL or BKZ might find it, thus revealing the secret key. The inner workings of these lattice
basis reduction algorithms are complex; for our attack, we use them as a black box, and
the only fact that is required is that the LLL algorithm is guaranteed in polynomial time to
produce a lattice vector of length |v| ≤ 2(dimL−1)/4(detL)1/ dimL; this is an exponential
approximation for the shortest vector in the lattice. In practice on random lattices, the
LLL algorithm performs somewhat better. It has been observed to find vectors of length
1.02dimL(detL)1/dimL [261]. For the lattices of relatively small dimension we deal with
here, the approximation factor does not play a large role in the analysis, but for large
dimensional lattices, the BKZ algorithm achieves a better approximation factor at the
cost of an increased running time. See Boneh and Venkatesan [45] and Nguyen and
Shparlinksi [259, 260] for formal analysis and bounds on the effectiveness of this algorithm.

There are two optimizations of this lattice construction that are useful for a practical
attack. The first offers only a minor practical improvement; we can eliminate the variable
d by, for example, scaling the first relation by s0r

−1
0 s−1

i ri and subtracting it from the ith

equation to obtain t− 1 linear relations in t unknowns ki, 0 ≤ i < t:

ki − s0r
−1
0 s−1

i rik0 − s−1
i H(mi) + r−1

0 s−1
i riH(mi) ≡ 0 mod n

This optimization has the effect of reducing the lattice dimension by one. Otherwise,
the lattice construction is the same, except that we replace the K/n scaling factor in
the second-to-last row of the basis matrix with a 1. The second practical optimization
is to note that since the ki are always positive, we can increase the bias by one bit by
recentering the nonces around 0. That is, let k′i = ki −K/2; if 0 ≤ ki ≤ K, we now
have −K/2 ≤ k′i ≤ K/2. This one has the effect of increasing the bias by one bit, which
is significant in practice. We give empirical results applying this attack to our scenario
in Section 6.2.3.

Modification of the lattice for ECSchnorr. We formulate the problem as in Equa-
tion (6.2) by writing

Ai = −r−1
0 ri mod n and Bi = s−1

i + s0r
−1
0 ri mod n.

At that point, we can apply the lattice-based algorithm precisely as we described earlier.

– 153 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

6.2.3 TPM meet Timing and Lattice Attacks

In Chapter 5, we have established that some TPM implementations leak information
about the nonces used for elliptic curve signatures. We show how to use standard
lattice techniques to recover the private signing key from this information. By applying
lattice attack to the leakage of Intel fTPM, our key recovery succeeds after about 1,300
observations and in less than two minutes. Similarly, we extract the private ECDSA key
from a hardware TPM manufactured by STMicroelectronics, which is certified at Common
Criteria (CC) EAL 4+, after fewer than 40,000 observations. Our timing attacks have
three main phases:

Phase 1: The attacker generates signature pairs and timing information and uses
this information to profile a given implementation. Attackers can collect the timing using
a remote source, for example, the network round-trip time, or precise local source, as
discussed in Section 5.2.1. In this pre-attack profile stage, the attacker knows the secret
keys and can use this to recover the nonces. Thus, it has perfect knowledge of the
correlation between timing and partial information about the secret nonce k that is leaked
through this timing oracle. As explained in Section 5.2.3, in our case, this bias is related
to the number of leading zero bits (LZBs) in the nonce, which is revealed by the timing
oracle. For the vulnerable TPM implementations in this paper, signing a message with a
nonce with more leading zero bits is expected to take less time.

Phase 2: To mount a live attack, the attacker can access a secret-related timing
oracle as above and collect a list of signature pairs and timing information from a vulnerable
TPM implementation. The attacker uses the signature timing information obtained during
the profiling phase to filter out signatures and only keep the signature pairs (ri, si) that
have a specific bias in the nonce ki.

The filtering is performed based on timing thresholds obtained during the profiling
stage when secret keys are known, and therefore, nonces can be recovered. This filtering
makes it possible for the attacker to find the correlation between the computation time
and bias distribution. As long as signatures belonging to different bias classes have
non-overlapping parts concerning their generation time, it is possible to define thresholds
for filtering signatures with nonces of a specific type of bias.

Phase 3: The attacker applies lattice-based cryptanalysis to recover the private key
d from a list of filtered signatures with biased nonces ki. In the noisier cases, e.g., with
timings collected remotely over the network, filtering may not work perfectly, and the
lattice attack may fail. In these cases, the attacker can randomly choose subsets of
filtered signatures and repeatedly run the lattice attack with the hope of leaving the noisy
samples out.

– 154 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Threat models. We put the components of our attacks together to demonstrate
end-to-end key recovery attacks in the TPM threat model. We order the presentation of
our attacks from weakest to strongest threat model: 1) We begin with the most potent
adversary, who has system-level privileges with the ability to load Linux kernel modules
(LKMs). This adversary uses our analysis tool to collect accurate timing measurements.
2) We reduce the privileges of the adversary to the user-level scenario in which the
execution time of the kernel interface can only be measured from userspace. 3) We show
how key recovery is still possible with an adversary who can simply measure the network
round-trip timings to a remote victim.

In all our experiments, we initially programmed the TPM devices with known keys
to unblind the nonces and facilitate our analysis. We have also verified the success of
attacks on ST TPM and Intel fTPM using unknown keys generated by each device. For
this, we used the TPM to generate secret keys that remained unknown to us internally,
exported the public key, ran the experiments, and finally verified the recovered private key
using the exported public key.

System-Level adversary. In this first attack, we used administrator privileges to collect
40,000 ECDSA signatures and precise timings, as shown in the histogram in Figure 5.11
and filtered the samples to select those with short nonces. We used the execution time
to classify these samples into three conjectured nonce length categories based on the
observed 4-bit fixed window: those with four, eight, or twelve most significant bits set
to zero. We then recovered the nonces, and secret keys using the attacks described
in Section 6.2.2, implemented in Sage 8.4 [336] using the BKZ algorithm with block size
30 for lattice basis reduction. We verified the candidate ECDSA private keys using the
public key.

Figure 6.14 summarizes the key recovery results for a system-level attacker, using
samples obtained via simple thresholding with the filter ranges for 12, 8, and 4 LZBs, as
shown in Figure 5.11. For example, to recover samples with 4 LZBs, we filtered signatures
that took anywhere from 4.75× 108 to 4.8× 108 cycles to generate. For the 4-bit bias,
we need 78 signatures to reach a 92% key recovery success probability. For the 8-bit and
12-bit cases, we can reach 100% success rate with only 35 and 23 signatures, respectively.
However, we need to collect more signatures in total to generate enough signatures with
many LZBs.

For the total number of signature operations, the optimal case turns out to be using
nonces with a 4-bit bias. Although we need 78 signatures to attack the 4-bit bias, since
each occurs with a probability of 1/16, it takes only about 1,248 signing operations to
have these samples. In our setup on the i7-7700 machine, our collection rate is around
385 signatures/minute. Therefore, we can collect enough samples in under four minutes.

– 155 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

20 30 40 50 60 70 80 90 100

Latice Dimension

0

20

40

60

80

100

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 4-bit
 8-bit
 12-bit

Figure 6.14: System Adversary: Key recovery success probabilities plotted by lattice
dimension for 4-, 8-, and 12-bit biases for ECDSA (NIST-256p) with administrator
privileges.

In the 8-bit case, we need to perform about 8,784 ECDSA signing operations to obtain
the 34 appropriate signatures necessary for a successful lattice attack. In total, it takes
less than 23 minutes to collect 8,784 signatures. Once the data is collected, key recovery
with lattice reduction takes only 2 to 3 seconds for dimension 30, and about a minute for
dimension 70. The running time of lattice basis reduction can increase dramatically for
larger lattice dimensions, but the lattice reduction step is not the bottleneck for these
attack parameters.

Intel fTPM ECSchnorr key recovery: We carried out a similar attack against
ECSchnorr by slightly modifying the lattice construction. We were able to recover the key
with 40 samples with 8 LZBs. A total of 10,240 signatures were required to perform this
attack, which can be collected in about 27 minutes. We also were able to recover the key
for the 4-bit case with 65 samples. We obtained these 4-bit samples from 1,040 signing
operations that took 1.5 minutes to collect.

STMicroelectronics TPM ECDSA key recovery: We also tested our approach
against the dedicated STMicroelectronics TPM chip (ST33TPHF2ESPI) in the system-
level adversary threat model. This target is Common Criteria certified at EAL4+ for the

– 156 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

TPM protection profiles and FIPS 140-2 certified at level 2 [321]. It is thus certified to
be resistant to physical leakage attacks, including timing attacks [320].

We measured the execution times for ECDSA (NIST-256p) signing computations on
a Core i7-8650U machine for 115,000 observations. The machine is equipped with the
ST33TPHF2ESPI manufactured by STMicroelectronics. The administrative privileges
allowed us to run our custom driver and collect samples with a high resolution.

Following the vulnerability discussion in Section 5.2.3, we began by filtering out any
data with execution time below 8 × 108 cycles to eliminate noise. We then sorted the
remaining signatures by their execution times. We were able to recover the ECDSA key
after generating 40,000 signatures. We recovered the key using the fastest 35 signatures
and running a lattice attack assuming a bias of 8 most significant zero bits in the nonces.
The required 40,000 samples can be collected in about 80 minutes on this target platform.
We are also able to recover the key from 24 samples by assuming 12 LZBs. However, this
required generating 219,000 total signatures.

User-level adversary. We now move to a less restrictive model, from a system-level
adversary to a user-level adversary where only a user API with user-level privileges is
provided to perform the signature operations and measure the execution time. Without
the installed kernel measurement tool, we obtain the distribution of signing times shown
in Figure 6.15. The noise makes it impossible to distinguish the samples according to
the number of leading zero bits in the nonces with high precision. However, we observe
that we have a biased Gaussian distribution, and by choosing signatures that have a short
execution time, we can still recover the ECDSA key.

We start our analysis by noting that in the system-level adversary setting shown
in Figure 5.11, the largest peak is at 4.82× 108 cycles, while in Figure 6.15 the largest
peak is around 4.97× 108. This behavior is expected since we incur additional latency by
measuring the delay from userspace. This noise is independent of the bias, and therefore
we set our filtering thresholds by assuming the entire histogram is shifted by moving
the profiling measurements to userspace. We collected a total of 219,000 samples. The
probability of obtaining a signature sample with 8 LZBs is 1/256, which means we expect
about 855 such signatures among our samples. However, due to the measurement noise,
we set a more conservative filtering threshold of 4.76× 108 cycles and obtained only 53

high-quality signatures. We randomly selected subsets of 30 signatures out of the 53

signatures and ran the lattice reduction 100 times. Experimentally, we observed that
it took 34 signatures to recover the key with 100% success rate. Running BKZ with
block size 30 for the lattice of this size took 2 to 3 seconds on our experimental machine.
After obtaining the key, we recovered the nonces and verified that most of them had the

– 157 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Figure 6.15:]
User Adversary: Histogram of ECDSA (NIST-256p) signature computation times on
the Core i7-7700 machine for 40,000 observations. The measurements were collected by

a user without administrator privileges.

eight MSBs set to zero1. If we had used the entire distribution, we would need about
256× 34 = 8, 704 signatures. We use the empirical numbers from our experiments to
estimate the likelihood of obtaining such samples in our experimental setup given our
choice of thresholds and the noise we experienced; in this case, the probability of obtaining
such a sample is 53/855. The estimated total number of signatures required to carry out
the attack is 140,413, which takes about 163 minutes to collect. In the 4-bit case, the
thresholds we used to filter the samples were between 4.8× 108 and 4.81× 108 cycles.
With 77 signatures, we recover the key with overwhelming probability. This translates to
77× 16 = 1, 232 signatures. But we also need to account for filtering from a narrower
range, which results in 1,121 samples out of the 13, 687 expected signatures with 4 LZBs
from our total of 219,000 samples. In this case, we estimated that in total, 15, 042

signatures are required for the attack, which takes approximately 18 minutes to collect.
1There were few samples with 12 zero MSBs in the analysis

– 158 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

6.2.4 Network Timing Attack on TPM ECDSA

This section further highlights the impact of these vulnerabilities by demonstrating a
remote attack against a StrongSwan IPsec VPN that uses a TPM to generate the
digital signatures for authentication. We demonstrate a remote attack that breaks the
authentication of a VPN server that uses Intel fTPM to store the private certificate key
and sign the authentication message. In this attack, the remote client recovers the server’s
private authentication key by timing only 45,000 authentication handshakes via a network
connection.

We demonstrate the viability of over the network attacks from clients targeting
a server assisted by an on-die TPM. The remote attacks are demonstrated on a simple
local area network (LAN) with the attacker and victim workstation connected through a 1
Gbps switch manufactured by Netgear. To this end, we first profile a custom synthesized
UDP client/server setup where we can minimize noise. This setup allows the gauging of
time measurement for the processes and networking. We later analyze the timing leakage
observed by a remote client from a server running StrongSwan VPN software.

Remote UDP attack. We created a server application that uses the Intel fTPM to
perform signing operations. The server receives a request for a signature and returns
the user’s signature over a simple protocol based on UDP. The client (the attacker)
sends requests to the server and collects the signatures while timing the request/response
round-trip time. Figure 6.16 shows the collected timing information for 40,000 requests.
Although there is some noise in the measurement, we can still distinguish signatures
generated using short nonces. Figure 6.17 shows our key recovery results.

The experimental results match our expectations outlined earlier since the TPM takes
around 200 milliseconds to generate a signature, which is a large enough window to
leak timing information over the network. We filtered 8-bit samples by thresholding at
4.93× 108 cycles and for 4-bit samples at 4.97× 108 cycles measured on the client. For
the case of 4-bit bias, we need 78 signatures above our timing threshold to recover the
key, which corresponds to 1,248 signature operations by the server. This can be collected
in less than 4 minutes. For the case of 8-bit bias, we recover the key using 47 signatures
with high probability, which requires 31 minutes of signing operations. These results
demonstrate that remote attacks on fTPM are viable. Next, we explore this direction
further by targeting the StrongSwan VPN product.

Remote timing attack against StrongSwan. StrongSwan is an open-source IPsec
Virtual Private Network (VPN) implementation supported by modern OSes, including
Linux and Microsoft Windows. VPNs can use the IPSec protocol for encryption and

– 159 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Figure 6.16: Histogram of ECDSA (NIST-256p) signature computation times over the
network for 40,000 observations. A server application running on our Core i7-8705G
machine is performing signing operations over a simple UDP-based protocol. The client
measures the request/response round-trip time to receive a new signature after each
request.

authentication. The IPsec key negotiation happens via the IKE protocol, using either
pre-shared secrets or digital certificates for authentication. StrongSwan further supports
IKEv2 with signature-based authentication using a TPM 2.0 supported device [327]. Here,
we attack a StrongSwan VPN Server configured to use the TPM for digital signature
authentication by measuring the IKE authentication handshake.

IKEv2 Interleaved Authentication with TPM signatures: We configure our server
to use the standard IKEv2 signature authentication with interleaved handshakes where
the authentication is performed by an IKE_SA_INIT and an IKE_AUTH exchange
between the client and server. Figure 6.18 shows these two handshakes, where the second
handshake triggers the TPM device to sign the authentication message. The first exchange
of the IKE session, IKE_SA_INIT, negotiates security parameters, sends nonces and
performs the Diffie-Hellman Key exchange. After the first exchange, the second exchange,
IKE_AUTH, can be encrypted using the shared Diffie-Hellman (DH) key. In the second
exchange, the two parties verify each others’ identities by signing each others’ nonces. We
generated a unique ECDSA attestation key (AK) using the Intel fTPM device on the VPN

– 160 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

20 30 40 50 60 70 80 90 100

Latice Dimension

0

20

40

60

80

100

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 user 4-bit
 user 8-bit
 remote-udp 4-bit
 remote-udp 8-bit

Figure 6.17: User-Level Adversary and Remote UDP Attack: Key recovery success
probabilities by lattice dimension for 4-bit and 8-bit cases for ECDSA (NIST-256p) with
timings collected from the userspace in one scneario, and over the network from a remote
client in another scenario.

server. The TPM device only exposes the public portion of the AK. Then we generated a
self-signed attestation identity key (AIK) certificate and stored the ECDSA AIK certificate
in the non-volatile memory of the TPM device. During the second exchange, the server
asks the TPM device holding the private AK to sign the client’s nonce and return the
signature to the client. When the client receives the signature, she can verify that her
nonce is signed with the legitimate server’s AK corresponding to the AIK certificate.
However, a malicious remote client or a local user who can exploit the timing behavior to
recover the private AK can forge valid signatures and act as a legitimate VPN server.

StrongSwan VPN key recovery: As a malicious client, we perform the following
steps to collect timing measurement and recover the secret AK:

1. The malicious client performs the first handshake with the server to exchange
security parameters, nonces and completes a Diffie-Hellman exchange.

2. The malicious client starts a timer and initiates the second handshake. After the
server signs the client’s nonce and other security parameters using the TPM device,
the malicious client will receive the signature and measure the total handshake time.
We discovered the TPM signature timing vulnerability might delay this exchange

– 161 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

t

Time the Auth
 handshake

IKE_INIT [Proposal , gx, nI , ...]

IKE_INITresponse [Proposal , gy , nR , ...]

sshared secret ← PRFh(gxy)

IKE_AUTH [SignskI (nR , ...)]

IKE_AUTHresponse [SignskR (nI , ...)]

skR

TPM_Sign [nI , ...]

TPMresponse [SignskR (nI , ...)]

TPMVPN ServerVPN Client

Figure 6.18: Steps of IKE_SA_INIT and IKE_AUTH exchange between the client and
server running StrongSwan VPN.

based on the nonce used in the signature generation, leaving an observable effect
on network packet timings.

3. The malicious client stores the network timing and the received signature pairs
and discards the session by sending an IKE_INFORMATION packet to the server. It
repeats this process, starting from the first step to collect enough time measurements
and signatures.

To determine if there is any exploitable leakage observed over the network, we collected
both remote timings on the client and local timings on the server running a StrongSwan
VPN software on our Core i7-8705G machine, where an Intel fTPM computes ECDSA
signatures. The histograms for 40,000 timing measurements observed both locally and on
the server are shown in Figure 5.11 and Figure 6.19.

The identifiable separate peaks corresponding to 4-bit and 8-bit leakage in Figure 5.11
are no longer observable with measurements collected over the noisy network in Figure 6.19.
Still, the relative location of the peaks in the local timings histogram can be used as
a template to design filters to be applied on the remote timings. For this, we need to
account for the change in clock frequencies. As a simple heuristic, we scale the filter
ranges in Figure 5.11 by the ratio of the time when the gigantic peaks are observed, i.e.,
3.41/4.82. We also adjusted the filters to account for the additional delay due to remote
measurements. Finally, we reduced the widths to cover the left half of the distributions

– 162 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Figure 6.19: Histogram of ECDSA (NIST-256p Curve) signing computation times over the
network for 40K observations. The server is running StrongSwan VPN software equipped
with Intel fTPM. The client application measures the request/response round-trip time.

since they yield cleaner samples. For 8-bit samples, we filter between 3.32 × 108 and
3.34× 108, and for 4-bit 3.35× 108 and 3.36× 108, obtaining 153 8-bit and 222 4-bit
samples. We then applied the lattice attacks from Section 6.2.2 to these samples using
our Sage implementation and BKZ-2.0 reduction with block size 30 over many iterations.
Figure 6.20 shows the results. We recover the key with high probability for both the 4-bit
and 8-bit cases after dimensions 34 and 80, respectively. In the 4-bit case, we used 222 out
of the expected 1/16× 198K = 12, 375 4-bit samples. To end up with 80 4-bit samples,
we would need to sample 80× 16 = 1, 280 times. However, since we are filtering for high-
quality samples within the nonces with 4-bit bias with probability 222/12, 375, we need
also to take that into account. This means we need about 1, 280× 12, 375/222 = 71, 351

signatures. The 8-bit case used 153 out of the 774 expected 8-bit samples. This result
means we need about 34× 256 = 8, 704 samples. Accounting for filtering with probability
153/774, we need about 8, 704×774/153 = 44, 032 signatures. In this case, targeting the
nonces with 8-bit bias turns out to be more efficient. The noise introduced by measuring
remotely on the client side has rendered 4-bit samples harder to distinguish, and therefore
these require more aggressive filtering. We can collect about 139 signatures per minute
from StrongSwan. This analysis means we can collect enough samples in about 5 hours
16 minutes. Compared to the local case, the increased attack time is due to the delay

– 163 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

20 30 40 50 60 70 80 90 100

Latice Dimension

0

10

20

30

40

50

60

70

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 4-bit
 8-bit

Figure 6.20: Remote StrongSwan Attack: Key recovery success probabilities by lattice
dimension for the 4-bit and 8-bit cases for ECDSA (NIST-256p) with samples collected
on the client.

incurred during the handshakes: it takes approximately 855/139 = 6.15 times longer to
collect each signature.

In our attack, we queried the VPN server directly to collect the signatures and timings.
This attack can also be performed by an active man-in-the-middle (MiTM) adversary
who hijacks a DH key exchange. However, there is no additional benefit to be gained
over the malicious client since the attacker is active in both scenarios. A passive attack
would not be possible since the signatures are encrypted with the shared secret between
the client and the server. Another critical factor that affects the viability of the attack is
networking noise. Depending on the type and traffic of the network, e.g., networks with
high bandwidth, local organizational networks, and local private networks on the cloud,
the attack’s success rate will vary. Typically in cloud environments, network connections
between cloud nodes tend to have higher bandwidth and more stable connections and will
have less timing noise.

6.2.5 Breaking ECDSA Timing Protection in SGX

WolfSSL uses the subroutine wc_ecc_mulmod_ex (Listing 7) to compute the scalar
multiplication k×G while generating the signature. This subroutine has built-in mitigations
against side-channel attacks and implements an always-add-and-double algorithm by

– 164 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Threat Model TPM Scheme #Sign. Time

Local System ST TPM ECDSA 39,980 80 mins
Local System fTPM ECDSA 1,248 4 mins
Local System fTPM ECSchnorr 1,040 3 mins
Local User fTPM ECDSA 15,042 18 mins
Remote SSwan fTPM ECDSA 44,032 ∼5 hrs

Table 6.2: Summary of our key recovery results.

arithmetizing the conditional check for the add. As a result the scalar operations add
at Line 15/18 and double at Line 16/19 will both be executed for all scalar bits. This
prevents an adversary from learning the nonce k bit by bit. The second countermeasure
that is implemented in this implementation aims to protect against attacks exploiting the
bitlength of the nonce [53, 248]. This countermeasure executes a sequence of dummy
operations for each leading zero bit. While these dummy operations mitigate side channels
like data cache attacks, page-level attacks, and timing attacks, we can use CopyCat to
distinguish the branch outcome at Line 13 and leak the bit length of nonce k. In this
section, we show that when an implementation leaks partial information [113], CopyCat
maximizes the capability of the attacker as if the leakage in the implementation were
introduced as a constant bias [259].

Recovering dummy operations. We analyze wc_ecc_mulmod_ex using CopyCat.
In this analysis, we count the number of instructions executed between consecutive
accesses to the page that holds the ecc_projective_dbl_point subroutine. The trace
shows that for one transition of basic blocks, we can observe 49 steps when the function
is processing the dummy operations. As soon as the subroutine switches to the real
operations, this step count will change to 46. As a result, we can use this information to
determine the number of dummy executions of the always-add-and-double sequence
from a set of traces. Since we only need to observe the first few bits to recover the
nonce’s length, we shortened our trace collection to observe only the first 7 bits.

Lattice attack using the nonce bit length. We generated many signature traces,
recovered the nonce lengths, and filtered for signatures with short nonces [45]. We
followed the approach of Howgrave-Graham and Smart [151] and Benger et al. [31] to
formulate the key recovery as a lattice problem. The detailed construction of this lattice
is given in Section 6.2.2. The desired short vector of this lattice can be found using

– 165 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

LZBs Dim L-Time Signatures IRQs T-Time

4 75 30 sec 1,200 3.9M 13.3 sec
5 58 5 sec 1,856 6.0M 20.4 sec
6 46 3 sec 2,944 9.6M 33.7 sec
7 42 2 sec 5,376 17.5M 1 min

Table 6.3: Minimum number of signature samples for each bias class to reach 100%
recovery success for the lattice-based key recovery on wc_ecc_mulmod_ex of ECDSA,
with lattice reduction time L-Time and trace collection time T-Time.

standard lattice basis reduction algorithms like LLL [220] or BKZ [292], which leads to
full recovery of the private key.

Evaluation. We executed this attack for 10,000 signing operations. Our attack recov-
ered the number of leading zero bits with 100% accuracy. On average, each attack issues
3244 IRQs to count 2542 steps of the scalar multiplication operation. Section 6.2.5 shows
the results for key recovery using various nonce bit lengths. Since the nonce length is
recovered without noise, the lattice attack is quite efficient.

6.3 Template MDS Attack on Constant-time RSA

In this section, we demonstrate the attack potential of Medusa by extracting an RSA
key from OpenSSL. We show that Medusa can leak various parts of an RSA key during
the base64 decoding stage. By leaking various smaller chunks from an RSA-1024 private
key, we can apply a lattice-based cryptoanalysis technique to recover the entire key within
20 minutes. Then we build leakage templates and recover full RSA keys by employing
lattice-based cryptanalysis techniques.

6.3.1 RSA Cryptosystem

RSA keys [284] are generated as follows:
1. Choose large prime numbers p and q, compute N = pq,
2. Compute the least common multiple λ(N) = lcm(p-1, q-1),
3. Choose e such that 1 < e < λ(N) and gcd(e, λ(N)) = 1,
4. Compute d = e−1 mod λ(N).

– 166 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

(N, e) are public and (p, q, λ(N), d) are private. RSA implementations commonly use the
Chinese remainder theorem (CRT) to reduce computation time, and generate additional
private values dP = d mod (p − 1), dQ = d mod (q − 1), and qinv = q−1 mod p. A
signature is the value s = hd mod N where h is a hashed and padded message. Signature
verification checks if h ≡ se mod N .

To prevent side-channel attacks on signature generation, most implementations blind
the input h with a random r before computing the modular exponentiation: sb =

(hre)d mod N = hdr mod N . Later, the unblinded signature can be computed as
s = sbr

−1 mod N . As a result, attacks on RSA key generation have gained recent
attention [14, 17]. However, since the private key parameters are only computed once, an
attack against RSA key generation must only require a single trace.

6.3.2 Sampling Partial RSA Secrets from OpenSSL

In Section 3.3.3, we analyzed the occurrence of rep mov in popular cryptographic libraries.
For the attack, we focus on OpenSSL 1.1.1c, as it is both widely used and it deploys
countermeasures against traditional side-channel attacks, making it a robust target. Note
that while we did not analyze other cryptographic libraries further, we expect that they
are vulnerable to the same or a similar attack as well. As the victim, we use a simple
artificial application that leverages OpenSSL to load an RSA key from a file and signs
some data using this key. In our attacker model, we can start the application arbitrarily
often, but we do not control any inputs to the application. Note that this scenario, i.e.,
triggering the victim application, is in line with previous research [61, 300, 356, 384].

Every time the application is started, it has to load the RSA private key from the
key file. The key file is in the PEM format, a base64 encoded representation of the key
parameters. Hence, to load the actual key into memory, OpenSSL first has to decode
the key file using its internal base64 decoder. When compiling the library to optimize
it for size, the base64 decoder uses rep mov for loading the base64-encoded key from
the key file. We attack exactly this rep mov sequence using Medusa to leak the RSA
parameters, which are required to derive the private key.

Running Medusa. OpenSSL keys in PEM format include both the default prime and
exponents of the RSA alongside the precomputed parameters for the Chinese Remainder
Theorem (CRT) computation. This includes modulus N , public exponent e, private
exponent d, prime numbers p and q, d mod (p− 1), d mod (q − 1) and the coefficient
q−1 mod p. The size of the copy operation during the execution of the rep mov instruction
depends on the key size. For example, for a 1024-bit RSA key, there are 5∗64+2∗128 = 576

bytes of key material to be copied. As the key material also includes several bytes for the

– 167 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

10

20
false priexp(8)

q(2) dp(7)

priexp(32) q(50)

Figure 6.21: Histogram and score of most likely 6-byte leakages through AVX256-P3
with 10K observations collected in 100 runs (labeled by starting bytes). Six byte block
leakages at q(2) (q starting at byte 2), priexp(8) and priexp(32) (RSA exponent d
starting at bytes and 8 and 32) and dp(7) (leak from dp = d mod p− 1 starting at byte
7) can be easily identified based on the observation frequencies.

ASN.1 PEM metadata, the total amount of copied raw data is approximately 600 bytes.
Since the data is base64 encoded, which always encodes three raw bytes as 4 bytes, the
actual amount of copied information is approximately 800 bytes. Hence, depending on the
copy operation’s size and the attack employed, different parts of this key may be leaked
more often (cf. Figure 3.3).

We create a template attack based on the frequency of different parts of the entire
RSA secrets’ leakage to tackle this limitation. In this attack, we use Variant 2 of Medusa
to leak the data with the unaligned store forwarding, revealing the common data bus’s
entire content. We also use the domino technique [300] combined with the frequency of
each observed value to build a frequency template of recovered key parts. As discussed in
Section 3.3.1, the probability of leaking specific data depends on the offset of the leaked
data transmitted over the common data bus. Hence, depending on which part of the data
we want to leak, we have to repeat Medusa between 10 000 and 20 000 times per key
byte. In total, we run this experiment 100 times. Based on the frequency of an observed
8-byte block of base64-encoded data, we can create a template that tells us which parts
of the key material are leaking more often. Note that each 8-bytes block of base64
encoded key material holds 6-bytes of raw key parts. Figure 6.21 and Figure 6.22 show the
frequency of each section leaked through different part of an AVX-256 register. Note that
in the top histogram, we see consistent, substantial leakage of 6-byte blocks in priexp
(the RSA key d), starting at byte locations 14, 38, 86, and 110 as well as substantial
leakage in q starting at locations 8, 32, 56. The dark grey pieces show the information
recovered that does not belong to the RSA parameters. Note that the histograms only
show the most dominant leakages to prevent crowding in the presentation.

– 168 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000
0

10

20 priexp(62) false

dp(13) priexp(86)

priexp(38) priexp(14)

q(56) p(51)

q(8) q(32)

priexp(110)

Figure 6.22: Histogram and score of most likely 6-byte leakages through AVX256-P4
(similar experiment as Figure 6.21). Block leakages at q(8), q(32),q(56) (q starting
at bytes 8, 32, 56), priexp(14), priexp(39) and priexp(86), dp(13) (leak from dp
starting at byte 13), p(51) (p starting at byte 51) can be identified based on the block
frequencies.

6.3.3 Recovering full RSA keys using Lattice Attacks

These leakages give us only partial information on the RSA secrets p, q, d (privexp in
the OpenSSL implementation), and d mod (p − 1), d mod (q − 1) and the coefficient
q−1 mod p are far from yielding the full secrets. However, we have seen significant progress
in recovering keys from RSA instantiated with partially exposed messages or decryption
keys. Coppersmith introduced a technique for finding small roots of polynomial equations
by reducing the problem of finding roots of a polynomial f(x) over Zp [76]. Cryptanalysis
can benefit from this technique to recover RSA factors if the least or most-significant
half of the bits of p or q are known. Boneh, Durfee, and Frankel proposed a technique to
recover the RSA secret and moduli p and q if a quarter of the least or most significant bits
of d are known when e is small enough to reach via exhaustive testing [43]. Later Boneh
and Durfee [42] presented a technique that recovers RSA factors with d < N0.292 without
any conditions on e. For an overview, see May [234], and the more recent Takayasu and
Kunihiro et al. [329]. Here we focus on two attacks which fit our leakage profile:

Coppersmith. We use the Coppersmith attack to recover the RSA factor q. We
combine partial leakages of q at bytes 8, 56 (from P4), and 2, 50 (from P3) and 0, 61,
12, 44 (from P2) to obtain a leakage in q: 18-bytes LSB (bytes 0-17) and 20-bytes MSB
(bytes 44-63). This combined leakage gives us information about more than a quarter
(38/128 bytes) of N for the 1024-bit RSA. Coppersmith’s attack is slightly adjusted to
handle the LSB/MSB split into the leaked data. We apply Coppersmith’s lattice attack

– 169 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

to recover small solutions to

f(x) = x+ (qMSB244×8 + qLSB)(1/218×8 mod N) .

We used SageMath v8.4 with NTL for LLL to implement the attack which takes a
few second to successfully recover a root x0 and the RSA factor: q = qMSB244×8 +

x0218×8 + qLSB . We attached scores by counting how many times the partial leakages
could be stitched together into an 8-byte block over 20 000 samples. The scores, as shown
in Section 6.3.3 serve as a template which we use to classify observations before trial by
Coppersmith. To obtain the statistics for the templates, we need 20 000 observations.
With more spurious blocks (selected as to have a score within ±20% of the target block),
we need to try more combinations. On average, we need 58 000 trials.

ymmX-P2 ymmX-P3 ymmX-P4

Block q(i) 44 12 61 0 2 50 8 56
Avg. Score 82 288 304 355 377 4157 401 3651
Spurious 5 18 16 14 0 1 0 0

Table 6.4: Leakage scores used for the template Coppersmith attack (q prime).

Boneh, Durfee, Frankel (BDF). The BDF attack [43] recovers RSA factors given
the LSB quarter of the secret exponent d bits when e is small enough to be exhaustively
tested. The attack iterates the following steps for each k ∈ [1, e] until a solution is found:

1. Form a polynomial equation:

f(x) = kx2 + (ed0 − k(N + 1)− 1)x− kN = 0 (mod 2n/4) .

Here n = log2(N) and d0 = d (mod 2n/4).
2. Find solutions to f(x). Due to the special structure of the modulus, the equation is

efficiently solved to recover at most 2t+1 solutions, where t is the largest power of
2 that divides k. For correctly chosen k the solution of f(x) yields p (or q) modulo
2n/4.

3. Check each recovered solution by taking it as the (candidate) LSB of p or q and
running Coppersmith to see if we obtain the RSA factors.

The algorithm runtime is O(e log(e)) Coppersmith iterations.

A small but effective optimization. Our target e = 216 + 1 is exhaustible. However,
we can do much better since we have some LSB bytes of p and q. We can use these bytes

– 170 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

to check the recovered candidate LSBs of p or q and take a shortcut omitting costly Step
3 if there is no match. With a few bytes of leakage, we can reduce the complexity from
O(e log(e)) to only O(log(e)) Coppersmith evaluations. For the 1024-bit case, we exploit
the leakage observed on d (priexp) with 6-byte leakages starting at bytes: 2, 8, 14, 16, 26,
which gives us 27 LSB of the required 32 bytes of d. We are missing 5 bytes, which is
now exhaustible. The attack requires about 180 trials to cope with the spurious blocks.

ymmX-P2 ymmX-P3 ymmX-P4

Block d(i) 2 16 26 8 14
Avg. Score 116 104 138 739 724
Spurious 9 8 0 1 0

Table 6.5: Leakage scores used for the template Coppersmith attack (d private key).

Scaling the attack to 2048-bit RSA. The 1024-bit RSA attack described above
recovered the secret key using a simple univariate formulation via Coppersmith’s technique
since a quarter of contagious private key bits were available. The 2048-bit is more
challenging since we cannot obtain 64 contagious bytes of q, p, or d through the leakage
channel. On the bright side, we have significantly more leakage from the higher blocks of
d and non-contiguous blocks of p and q. The main idea is to form multivariate expressions
of the form fi(x, y) using the known parts of d, p, and q where x and y represent the
unknown parts of p and q. Then we apply lattice reduction to reduce the size of the
coefficients. A resultant computation applied on the reduced multivariate polynomials
yields a univariate polynomial, whose solution will produce the unknown parts of p or q.
The success probability for the attack depends on the amount of leakage and the precise
lattice formulation. While plausible, this approach is beyond the scope of this paper. For
further information on multivariate analysis see [40, 102, 117].

6.4 Single-trace Attacks on Public Key Schemes

Public-key algorithms that execute variable operations for each bit of a secret input, like the
square-and-multiply algorithm for modular exponentiation and scalar multiplication based
on Montgomery ladders, are susceptible to side-channel leakage. Earlier attacks exploit
such algorithms [383, 384, 390] where the victim is triggered many times to compensate
for potential sampling noise. These attacks generally conclude with the recovery of most of
the secret bits. Nowadays, most implementations have adopted constant-time algorithms
like fixed-window scalar multiplication to mitigate such attacks [282]. To demonstrate the

– 171 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

strength of CopyCat, we develop single-trace attacks that allow efficient cryptographic
key recovery from multiple widely-used cryptographic libraries.

Previous single-trace attacks on RSA. Recent work has demonstrated a single-trace
side-channel attack against RSA key generation that leaks the sequence of divisions and
subtractions from the BEEA during the coprimality test gcd(e, p− 1) [16, 365] or secret
key generation d = e−1 mod λ(N) [58]. These attacks recover the secrets (p − 1) or
lcm(p− 1, q − 1) from this sequence when e is small enough to be brute forced, which is
typically the case in practice2. The proposed mitigation is to increase the size of the input
e by masking it with a random variable that may be hard coded [58]. In Section 6.4.3, we
use CopyCat to recover all the branches from BEEA, not just the sequence of divisions
and subtractions. We propose a novel algorithm that uses this information to recover the
private factors p and q from e−1 mod λ(N). Our attack works even for large e, thwarting
the above mitigations.

Furthermore, our algorithm can recover the key from a modular inversion algorithm
with multiple unknowns. We demonstrate a novel end-to-end single-trace attack on the
CRT computation q−1 mod p. In a concurrent and independent work, Aldaya et al. [14]
outline a different key recovery algorithm for q−1 mod p, which is not always successful.
Our single-trace attacks on RSA in Section 6.4.3 use a branch-and-prune algorithm
inspired by Heninger and Shacham [145]. Bernstein et al. applied a variant of branch-
and-prune algorithm to recover RSA keys from a sliding-window modular exponentiation
implementation [33]. Similarly, Yarom et al. demonstrated an attack with intra-cache line
granularity on a fixed-window implementation of modular exponentiation that recovers a
fraction of the bits [385]. In Section 6.4.4, we generalize our attack to implementations
of BEEA used in other popular cryptographic libraries. We demonstrate attacks against
gcd(p− 1, q− 1) in OpenSSL X.931 RSA and q−1 mod p and e−1 mod λ(N) in WolfSSL
and Libgcrypt.

Contribution. We extend the cryptanalysis of the binary Euclidean algorithm used for
modular inversion in most common libraries we examined. We propose novel algorithms
for efficiently recovering cryptographic keys from a single control flow trace for DSA and
ECDSA digital signature generation and RSA key generation. The libraries we examined
implemented numerous mitigations against side-channel attacks, including always-add-
and-double for elliptic curve scalar multiplication and RSA exponent masking. Still, these
protections were insufficient to protect against CopyCat. We conclude that new classes

2e is commonly chosen as 216 + 1 = 65537.

– 172 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

of defenses will be necessary to protect against this type of high-granularity, deterministic,
and noise-free attack.

Consequently, CopyCat enables a class of side-channel cryptanalysis targeting secure
enclaves that have previously not been sufficiently understood. In an extensive study of
cryptographic implementations within widely-used libraries, we discover that most of them
have exploitable flaws one way or another when the leakage model matches the capability
of CopyCat. On top of this, we propose new single-trace attacks that apply to multiple
signature schemes [112] and attacks on RSA key generation based on the branch-and-
prune algorithm [145]. We demonstrate how combining these techniques with the leakage
obtained by CopyCat allows efficient single-trace key recovery in multiple real-world
implementations. Our practical attacks on Intel SGX is deterministically reproducible
without additional assumptions or sampling noise. We hope that our findings will help
developers and the community to improve protection against this class of vulnerabilities.

6.4.1 Unleashing CopyCat on WolfSSL

WolfSSL is a prominent, FIPS-certified solution officially supporting Intel SGX [374]. In a
case study on the WolfSSL cryptographic library, we show that CopyCat enables attacks
that were not previously possible without a deterministic and fine-grained leakage model.
we outline our controlled-channel attack using CopyCat to precisely recover the full
execution trace of WolfSSL’s implementation of the binary extended Euclidean algorithm
(BEEA) used for modular inversion of cryptographic secrets in DSA, ECDSA, and RSA.
Precise recovery of the full execution flow of BEEA enables new single-trace algorithmic
attacks on both DSA signing and RSA key generation, as demonstrated in Sections 6.4.2
and 6.4.3, respectively. Finally, we apply CopyCat to bypass incomplete side-channel
mitigations and recover deterministic partial information on ECDSA signatures, which
allows for efficient key recovery via lattices.

Experimental setup. Our experimental setup includes a desktop Intel Core i7-7700
CPU that supports Intel SGX equipped with the latest microcode (0xca) running Ubuntu
16.04 with kernel 4.14.0-72-generic. We use the SGX-Step [351] framework v1.4.0 to
implement our attacks on the latest stable WolfSSL version 4.2.0. WolfSSL officially
supports compilation for Intel SGX enclaves. We implemented our key recovery attacks in
SageMath version 8.8.

CopyCat analysis of BEEA. Computing the modular inverse or greatest common
divisor (GCD) using the binary extended Euclidean algorithm (BEEA) has previously
exposed cryptographic implementations to side-channel attacks [7, 113, 365]. The BEEA,

– 173 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

as shown in Algorithm 3, is not constant time and can leak various bits of its input.
However, previous attacks are limited to recovering only partial and noisy information
about the secret input. This limitation stems from low spatial resolution and the presence
of noise. For instance, a cache- or page-level attacker who can distinguish which arithmetic
subroutines the algorithm has invoked cannot determine the outcome of the comparison
at line 13; both directions of the branch generate the same sequence of memory access
patterns. Additionally, the arithmetic functions may fit within the same page and become
indistinguishable for a page-level adversary. Alternatively, a cache attacker may track these
branches’ outcomes within the same page by monitoring the corresponding instruction
cache lines for the BEEA subroutine. However, a compact implementation of this algorithm
can fit multiple branches within the same cache line. While some microarchitectural
attacks on the instruction stream may leak some of these low-level branch outcomes, they
are all prone to various amounts of noise [15, 104, 153, 218, 352].

WolfSSL supports subroutines fp_invmod_slow and fp_invmod3 as two different
BEEA implementations. The former is a straightforward implementation, and the latter is a
compact implementation that only supports odd moduli. We analyze both implementations
and show how to use CopyCat to recover these implementations’ runtime control flow
deterministically and without noise.

Binary layout. The subroutines fp_iseven and fp_isodd are simply inlined within
the same page as their caller fp_invmod_slow after the compilation. However, the
arithmetic functions A=fp_add, C=fp_cmp, D=fp_div_2, and S=fp_sub are external
calls and reside in a new page. Analyzing these arithmetic functions (A, C, D, S), including
their internal subroutines, shows that they span 2, 895 bytes. Hence, it is reasonable to
assume that they can fit into a single 4KiB page, thus preventing a page-level attacker
from distinguishing them at runtime altogether. Besides, even assuming they do not align
within the same page, reconstructing the exact execution flow is impossible. For example,
the transition from S to D can result from multiple different code paths. The instructions
for fp_invmod_slow can fit into fewer than six cache lines with multiple basic blocks4

overlapping within the same line.
WolfSSL also supports a modified version of BEEA, fp_invmod specialized to the

case of odd modulus, which is used for RSA q−1 mod p (§6.4.3) and DSA k−1 mod n

(§6.4.2). The control flow and overall layout for fp_invmod are similar to the above
implementation, but it is more compact, as it does not include some of the arithmetic

3fp_invmod_slow and fp_invmod can be found at line 885 and 1015 of https://github.com/
wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/tfm.c, respectively.

4A basic block is a code sequence that has no branches in and out.

– 174 –

https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/tfm.c
https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/tfm.c

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

statements. fp_invmod can fit into fewer than four cache lines with multiple overlapping
basic blocks.

Recovering BEEA control-Flow transfers. We analyzed the runtime control flow of
fp_invmod_slow by matching its disassembly with the execution trace we recovered from
running CopyCat. Figure 6.23 shows the control flow transfers at page-level granularity
for the page corresponding to fp_invmod_slow and the page corresponding to arithmetic
functions (Circles). Additionally, each arrow’s weight shows what number of instructions
fp_invmod_slow execute before accessing the page corresponding to arithmetic functions.
The division loop for ui (u-loop) and vi (v-loop) have a similar control flow. In addition,
the two blocks of substitutions after the comparison of u > v have similar control flow
for both the left S1 and right S2 direction. Only specific transitions are viable from these
blocks to division loops during the computation of the modular inverse. For example,
S2 always goes to v-loop and S1 always goes to u-loop. Since these instruction counts
are distinguishable for transitions related to conditional statements, we can use a trace
consisting of a vector of these weights in the graph to infer the conditional statement’s
outcome.

S1

S2

u-loop 8

v-loop

4S

5

5
C

4S

4S

13

4S

8

8
D

3

S

3D

8

11D
3

S

3DStart

Start

11

13

D

11

13

D

4A

4A

S

S

Start

Figure 6.23: Control flow of the BEEA as implemented by fp_invmod_slow. Each circle
(D=div, C=cmp, S=sub, A=add) represents a call to a function in the page that holds
these arithmetic functions. We count the exact number of instructions between two
consecutive invocations that hit this page. The instruction counts reveal branch outcomes.

With a trace including the weights of instruction counts collected between two
consecutive accesses to the page that holds the arithmetic operations (A, C, D, S), we
apply a set of divide-and-conquer rules to reconstruct the control flow for fp_invmod_slow.

– 175 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

11,3,8,5,4,4,13,11,3,8,5,4,4,8,11,3,8,11,3,8,13,4,3,3,8,11,3,11,5,4,4
DDD		8	CSSS		13	DDD		8	CSSS		8	DDD		8	DDD		8	DASDD				8	DDD		11	CSSS

13

S2

8

S1 S?

8

v-loop

8

u-loop

8

u-loop

8

u-loop

11

u-loop

8

?-loopTr
an
sla

te

Figure 6.24: An example cut of a trace that is recovered from fp_invmod_slow. First,
we replace the weights according to Rules 1, 2, and 3. Then we use other transitions
(Rules 4 and 5) to recover the whole control flow sequence.

These rules start by translating the recovered weights to corresponding generic blocks.
For example, every time the algorithm executes an iteration of a division loop (u/v-loop),
we observe either the sequence D → D → D, or the sequence D → A→ S → D → D.
Each of these sequences generates a consistent set of weights. Similarly, S1 or S2 always
generates a sequence like C → S → S → S. After translating these generic blocks, we
can use the remaining transitions to distinguish the exact blocks, i.e., we can recover
whether a S1 or S2 followed by a set of division loops is equal to a transition from S1 to
u-loop or transition from S2 to v-loop. These rules are summarized as follow:

• Rule 1: ?
11−→?

3−→? = D → D → D.

• Rule 2: ?
13−→?

4−→?
3−→?

3−→? = D → A→ S → D → D.

• Rule 3: ?
5−→?

4−→?
4−→? = C → S → S → S.

• Rule 4: S?
13−→? = S2→ v-loop.

• Rule 5: S?
8−→? = S1→ u-loop.

We first replace some weights according to Rules 1, 2, and 3, which identify if we are
in a division loop (u-loop or v-loop) or a comparison and substitution block (S?). Based
on the other transitions (Rule 4 and 5), we can determine which state of the comparison
and substitution block we have moved from and which division loop we have moved to
within the trace. An example sequence from the execution of fp_invmod_slow and its
translation to the control flow transitions is given in Figure 6.24.

For the compact implementation in fp_invmod, we apply the same approach. Fig-
ure 6.25 shows the control flow for this implementation after runtime analysis using
CopyCat. Similarly, we define a set of rules to translate the trace of instruction counts

– 176 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

S2

u-loop

S1

8

v-loop

4S

5

5
C

S

4S

13

S

8

8
D

3S

7

8

D

8

11D

3S

7

8

DStart

Start

Start

Figure 6.25: Control flow of BEEA in fp_invmod.

to control flow transfers of BEEA. Based on Figure 6.25, we modify the first three rules
as follows to support control-flow recovery based on the same approach:5

• Rule 1: ?
7−→? = D → D.

• Rule 2: ?
8−→?

3−→?
3−→? = D → S → D.

• Rule 3: ?
5−→?

4−→? = C → S → S.

6.4.2 Single-Trace Attack on DSA Signing

In contrast to previous attacks on BEEA [113] that leak partial information about the nonce,
CopyCat recovers the complete control flow from the execution of this implementation
with 100 percent precision virtually. As a result, we can perform a single-trace attack
on the DSA signing operation. In Section 6.4.4, we generalize this attack and expose
multiple vulnerabilities in the Libgcrypt library.

DSA key recovery. WolfSSL uses fp_invmod to compute the modular inversion of
kinv = k−1 mod n, where n is an odd prime. Since we can recover the exact control flow
of this computation and the modulus n is public, we step through the execution trace of
Algorithm 3, applying each step of the computation according to the recovered path to
compute kinv bit by bit. After recovering kinv, recovering the full nonce and private key
is trivial: k = k−1

inv mod n, x = r−1(sk − h) mod n.
5Rule 4 and 5 remain the same.

– 177 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Evaluation. To attack 160-bit DSA, we used a combination of pages in a page-level
controlled-channel attack to first reach the beginning of the modular inversion operation
for DSA. Then we start CopyCat over the code page for fp_invmod. We executed this
attack for 100 different signing operations. On average, this attack issues 22,000 IRQs
and takes 75 ms to iterate over an average of 6,320 steps for each signature generation.
Out of 100 experiments, our single-trace attack successfully recovered the full control flow
and the key using the algorithm above, implying that CopyCat reliably reconstructs the
entire execution flow. As a result, we can execute a single-trace attack on DSA without
the need for multiple signatures.

6.4.3 Single-Trace Attacks on RSA Key Generation

During RSA key generation, WolfSSL checks if a potential prime p is coprime with e by
checking if gcd(e, p − 1) is equal to 1. This step uses the textbook greatest common
divisor (GCD) algorithm, which performs a series of divisions. This algorithm appears
to be less vulnerable to control-flow-based key recovery. However, in a later stage,
WolfSSL computes d = e−1 mod λ(N) and the CRT parameter q−1 mod p using the
BEEA. WolfSSL always generates the CRT parameters during RSA key generation.6

Key recovery from a q−1 mod p trace. Compared to k−1 mod n, this attack is more
challenging since, in this case, both operands p and q are unknown. We give a novel and
efficient attack that recovers the secret RSA parameters p and q using CopyCat. We
use the relationship of the public modulus N = pq and the execution trace of the BEEA
on q−1 mod p, which provides enough information to recover the factorization of N . The
main idea is that the BEEA algorithm works sequentially from the least significant bits of
p and q. Thus if we iteratively guess bits of p and q starting from the least significant
bits, we can verify that a guess matches the relevant steps of the BEEA execution trace,
as well as the constraint that N = pq for the bits guessed so far, and eliminate guesses
that do not. This algorithm resembles the branch-and-prune algorithm of [145], with new
constraints.

We propose Algorithm 4 to recover p and q using only knowledge of N and the
execution trace of the BEEA on q−1 mod p. The algorithm starts by initializing a list of
hypotheses for values of the least significant bits of q and p. Each hypothesis keeps track
of the current step, bit position b, and the hypothesized values of ps = p mod 2b and
qs = q mod 2b. Among the four possible assignments for the (b+ 1)st bits of p and q in
Step 7, there will be two choices satisfying the constraint that pq ≡ N mod 2b+1. We

6wc_MakeRsaKey at https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/
src/rsa.c#L3726 invokes BEEA multiple times during RSA Key generation.

– 178 –

https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/rsa.c#L3726
https://github.com/wolfSSL/wolfssl/blob/48c4b2fedc/wolfcrypt/src/rsa.c#L3726

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

evaluate the BEEA algorithm for these new guesses up to the number of bits guessed
so far and check this deterministic algorithm evaluation on the guess against the ground
truth execution trace t. We then do a depth-first search prioritized by the number of
steps in which the algorithm is executed correctly and terminate when we have found a
candidate for which pq = N holds.

Evaluation. We executed an attack similar to Section 6.4.2 to collect traces from the
modular inversion of q−1 mod p, as it is computed by fp_invmod_slow. We tried this
attack on 100 different 2048-bit RSA key generations. On average, we iterate over 39,400
steps by issuing 106490 IRQs in 365 ms. However, the average time to collect a trace
can take up to a second, depending on the prime number generation’s execution time.
The attack takes 20 seconds to recover the key from a trace. All 100 trials of the attack
successfully recovered the keys.

Key recovery from an e−1 mod λ(N) trace. In contrast to previous attacks on this
computation [58], we propose a different algorithmic attack that takes advantage of the
fact that CopyCat can recover the entire control flow of this algorithm. As a result,
one can carry out a single-trace attack for any value of e, both large or small. This
observation shows that the proposed masking countermeasure in [58] is insecure against
our strong CopyCat adversary.

Our goal is to recover the RSA primes p and q using the trace of the BEEA for
d = e−1 mod λ(N). The modulus N and the public exponent e are known, while λ(N)

is secret. We present a modified branch-and-prune technique in Algorithm 5 that recovers
the factors p and q for a large fraction of generated RSA keys.

The main idea is to iteratively guess bits of p and q starting from the least significant
bits, then verify that pq = N and the relevant steps of the BEEA execution trace match
the guess so far. However, the BEEA is computed on e and λ(N) = (p − 1)(q −
1)/ gcd(p − 1, q − 1). We do not know gcd(p − 1, q − 1) and must guess it for this
algorithm, but with high probability, it only has small factors and can be brute-forced. For
simplicity, we specialize to the case of gcd(p− 1, q− 1) = 2i for small integer i below, but
the analysis can be extended to other candidate small primes with more brute force effort.

For each guess 2i for gcd(p− 1, q − 1), we iteratively generate guesses for ps and qs,
compute φs = (ps − 1)(qs − 1) and then λs = φs/2

i. We compare the execution trace t
to the execution trace for λs and e. The algorithm either returns p and q or it fails to
recover p and q if φ/λ(N) 6= 2i.

Analysis. The algorithm will succeed whenever φ/λ = 2i for small i. For non-powers of
2, the test against the BEEA execution trace in Step 15 will likely fail and cause this branch

– 179 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

to be pruned. Since p = 2p′ + 1 and q = 2q′ + 1 for some p′, q′ ∈ Z, we have λ(N) =

lcm(p− 1, q − 1) = 2lcm(p′, q′). From the prime number theorem [305], the probability
that two random integers are coprime converges to

∏
p∈primes(1− 1/p2) = 6

π2 ≈ 61% as
the size of the integers increases. In other words, if we run Algorithm 5 for only i = 1, it
will succeed 61% of the time when p′ and q′ are actually coprime. If we allow p′ and q′ to
have even factors we obtain a probability of

∏
p∈primes,p>2(1− 1/p2) = 8

π2 ≈ 81%. This
analysis means that even for a modest number of iterations, e.g., ` = 8, we have nearly
81% success probability. Our experiments confirm these estimates.

Evaluation. We tried this attack on 100 different key generation efforts (2048-bit key).
On average, we iterate over 81,090 steps by issuing 230,050 interrupts per attack in
800ms. The average time to collect a trace is about a second, and the attack takes about
30 seconds to successfully recover the key for 81% of the keys when lcm((p−1)(q−1)) ≡
(p− 1)(q − 1)/2i.

Revisiting masking protection. Earlier attacks required bruteforcing the value of
e [365]. Our algorithm works for arbitrary, even for the maximum possible length of
e. Thus increasing the size of e by choosing a larger public exponent or masking is
insufficient to mitigate our attack. Aldaya et al. [17] proposed masking e by computing
b = (er)−1 mod λ(N) for a random r such that gcd(r, λ(N)) = 1. The private key then
can be computed as d = rb mod λ(N). In this proposal, they have even suggested that r
can be hardcoded. We tested our attack for a hardcoded (known) choice of r and verified
that key recovery works in this case. Alternatively, if r is not hardcoded but we have
a trace for the initial gcd(r, λ(N)) computation using binary gcd, we can again decode
it (with the knowledge of N) to recover r. With r recovered, the attack proceeds as
before, i.e., from the execution trace of b = (er)−1 mod λ(N) we recover p and q by
running Algorithm 5 with er supplied as input instead of e. Since Algorithm 5 is agnostic
with respect to the size of e, it will handle the full size er and recover p and q.

6.4.4 CopyCat-Based Cryptanalysis

Now that we have empirically verified through real-world attacks that CopyCat can
recover the runtime control flow of all the branches deterministically, we analyze similar
cryptographic implementations in other open-source libraries. This analysis covers the
latest Libgcrypt 1.8.5, OpenSSL 1.1.1d, and Intel IPP Crypto [158]. OpenSSL and Intel
IPP Crypto are particularly crucial for products using Intel SGX. Intel has an official
wrapper around OpenSSL, called Intel SGX-SSL [161]. The current version of Intel
SGX-SSL pulls the stable OpenSSL 1.1.1d. Intel IPP Crypto is the official cryptographic

– 180 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

library by Intel, and many Intel products, including Intel SGX SDK [174], are using it.
Section 6.4.4 summarizes our findings in this paper regarding vulnerable code paths.

Operation (Subroutine) Implementation Secret
Branch Exploitable Computation → Vulnerable Callers Single-Trace

Attack

Scalar Multiply (wc_ecc_mulmod_ex) Montgomery Ladder w/ Branches 4 4 (k ×G)→ wc_ecc_sign_hash 8

Greatest Common Divisor (fp_gcd) Euclidean (Divisions) 4 8 N/A N/A
(k−1 mod n)→ wc_DsaSign 4

(q−1 mod p)→ wc_MakeRsaKey 4
WolfS

SL

Modular Inverse (fp_invmod) BEEA 4 4

(e−1 mod Λ(N))→ wc_MakeRsaKey 4

Greatest Common Divisor (mpi_gcd) Euclidean (Divisions) 4 8 N/A N/A
(k−1 mod n)→ {dsa,elgamal}.c::sign,_gcry_ecc_ecdsa_sign 4

(q−1 mod p)→ generate_{std,fips,x931} 4Lib
gcr

ypt
Modular Inverse (mpi_invm) Modified BEEA [205, Vol II, §4.5.2] 4 4

(e−1 mod Λ(N))→ generate_{std,fips,x931} 4

Greatest Common Divisor (BN_gcd) BEEA 4 4 gcd(q − 1, p− 1)→ RSA_X931_derive_ex 4

Op
enS

SL
Modular Inverse (BN_mod_inverse_no_branch) BEEA w/ Branches 8 N/A N/A N/A

? gcd(q − 1, e)→ cpIsCoPrime N/A
Greatest Common Divisor (ippsGcd_BN) Modified Lehmer’s GCD 4 ? gcd(p− 1, q − 1)→ isValidPriv1_rsa N/A

IPP
Cry

pto

Modular Inverse (cpModInv_BNU) Euclidean (Divisions) 4 8 N/A N/A

Table 6.6: An overview of applicability of CopyCat on cryptographic libraries: WolfSSL,
Libgcrypt, OpenSSL, IPP Crypto.

Libgcrypt analysis. Libgcrypt uses a custom implementation of the extended Euclidean
algorithm to compute modular inverses (Algorithm 6). This algorithm is derived from
an exercise from The Art of Computer Programming [205, Vol II, §4.5.2, Alg X]. The
algorithm is an adaptation of Algorithm X to use the efficient divide by two reduction
steps in the binary Euclidean algorithm. The algorithm computes a vector (u1, u2, u3)

such that uu1 + vu2 = u3 = gcd(u, v) using auxiliary vectors (v1, v2, v3), (t1, t2, t3). The
iterations preserve the invariants ut1 + vt2 = t3, uu1 + vu2 = u3 and uv1 + vv2 = v3.
This algorithm is used in numerous places for secret operations.

k−1 mod n in DSA, ECDSA and ElGamal: The DSA, ECDSA and ElGamal signature
schemes all require computing k−1 mod n. Libgcrypt computers all of these use cases
using Algorithm 6. We derive a single-trace attack similar to Section 6.4.2 that recovers
all the algorithm branches during this computation. This technique trivially leaks k−1 for
each of these algorithms in a single-trace attack. As a result, they are all vulnerable to the
attack described in Section 6.4.2. Note that DSA and ElGamal do not use any masking
countermeasure, and we discuss below how the masking countermeasure for ECDSA is
insecure.

ECDSA masking countermeasure: We identified two vulnerabilities related to mask-
ing countermeasure for ECDSA signing in Libgcrypt, as shown in Listing 8, which leaves it
vulnerable to attacks against Algorithm 6 and a single-trace attack during the computation
of k−1 mod n. Using a randomly chosen blinding variable b, Libgcrypt computes the
blinded signature as sb = k−1(hb+ bdr) mod n. To compute the unblinded signature, it

– 181 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

computes s = sbb
−1 mod n. The first vulnerability is that k−1 mod n is not blinded, so a

single-trace attack on this operation simply recovers the nonce k. This blinding should
be modified to sb = (kb)−1(h + xr) mod n, and this can be unblinded by computing
s = sbb mod n.

The second vulnerability is that since, in this blinding scheme, the implementation
needs to invert b, Libgcrypt computes the b−1 mod n using the same vulnerable technique
(Listing 9). Therefore, a single-trace attack can also recover the blinding value.

RSA input masking: To avoid timing attacks, RSA decryption and signing in Libgcrypt
use masking on the input ciphertext or message. For a random variable r and input
ciphertext c, the decryption is performed on mb = (cre)d mod n = cdr mod n. The
message can then be unblinded by computing m = mbr

−1 = cd mod n. Unfortunately,
the vulnerable modular inverse function is responsible for computing r−1 mod n. As a
result, a single-trace attack can recover the blinding factor, rendering this countermeasure
ineffective.

RSA key generation: Libgcrypt has three RSA key generation subroutines for different
use cases: generate_std, generate_fips and generate_x931 all use the vulnerable
mpi_invm function to compute both q−1 mod p and e−1 mod λ(N), and are vulnerable
to the attacks described in Section 6.4.3.

OpenSSL analysis. After several iterations [113, 365], OpenSSL implemented a
constant-time modular inversion function, BN_mod_inverse_no_branch for DSA, ECDSA,
and RSA key generation. Various critical primitives use this function to compute the GCD.
However the legacy binary GCD function is still supported in the latest OpenSSL code
base, version 1.1.1d, in the function BN_gcd (cf. Appendix Algorithm 7). The subroutine
RSA_X931_derive_ex, which is responsible for generating RSA keys according to the
X.931 standard, uses this function during the computation of λ(N) = lcm(p− 1, q− 1) =

(p− 1)(q − 1)/gcd(p− 1, q − 1), as shown in Listing 10. Thus we can apply our attack
technique from Section 6.4.3 to recover the RSA private key from the computation of
gcd(p− 1, q − 1).

Analysis of Intel IPP Crypto. The Intel IPP Crypto library uses a conventional
Euclidean algorithm to compute modular inverses. This algorithm performs a series
of division operations in a loop. While CopyCat can recover the precise number of
division operations, this leakage does not seem to be exploitable during the RSA key
generation [248, §6].

– 182 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

On the other hand, for computing the GCD, Intel IPP Crypto uses a modified
version of Lehmer’s GCD algorithm [318]. Lehmer’s GCD algorithm and Intel’s modified
implementation are not constant time and have secret-dependent branches [160]. This
GCD implementation is only used during RSA key generation, where only a single-trace
attack results in a vulnerability. Our analysis in Section 6.4.3 does not directly apply to
this algorithm, and we leave the study and potential exploitability of this implementation
for future work. This potential oversight in Intel’s GCD implementation once more
illustrates the intricacies of applying Intel’s own recommended constant-time programming
guidelines [180].

More single-Trace attack evaluations. We replicated the attack in Section 6.4.2
using synthetic traces from Algorithm 6. We ran the attack on 100 different k−1 mod n

and recovered kinv and the secret key in all cases. The attack applies to ElGamal as well
by computing the private key x = r−1(h− sk) mod (p− 1).

Single-Trace attack on RSA Key Generation (Libgcrypt, OpenSSL). We repli-
cated synthetic traces of branches from OpenSSL’s binary GCD algorithm executed on
gcd(q − 1, p− 1). We applied Algorithm 4 with a modified test function modeling this
algorithm and applied a heuristic to match the appropriate number of trace steps to the
bits guessed so far. We ran the attack using synthetic traces for 100 different 256-bit
RSA keys. We chose this key size to verify the correctness of our algorithm efficiently.
Our attack successfully recovered every key. We similarly replicated the same attack as
Section 6.4.3 with a test function following Algorithm 6. Similarly, we ran the attack
using synthetic traces for 100 different 256-bit RSA keys, and the attack was successful
in all cases.

– 183 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Listing 4 fp_invmod_slow implements modular inversion using the binary extended
Euclidean algorithm (BEEA). The subroutines fp_iseven and fp_isodd are inlined and
simply check the last bit of their operand. The arithmetic subroutines: fp_sub, fp_div_2,
fp_cmp can all fit within the same page.

1 static int fp_invmod_slow (fp_int ∗ a, fp_int ∗ b, fp_int ∗ c){...
2 top:
3 while (fp_iseven (u) == FP_YES) { /∗ 4. while u is even do ∗/
4 fp_div_2 (u, u); /∗ 4.1 u = u/2 ∗/
5 if (fp_isodd (A) == FP_YES || /∗ 4.2 if A or B is odd then ∗/
6 fp_isodd (B) == FP_YES) {
7 fp_add (A, y, A); /∗ A = (A+y)/2 ∗/
8 fp_sub (B, x, B); /∗ B = (B−x)/2 ∗/
9 }

10 fp_div_2 (A, A); /∗ A = A/2 ∗/
11 fp_div_2 (B, B); /∗ B = B/2 ∗/
12 }
13 while (fp_iseven (v) == FP_YES) { /∗ 5. while v is even do ∗/
14 fp_div_2 (v, v); /∗ 5.1 v = v/2 ∗/
15 if (fp_isodd (C) == FP_YES || /∗ 5.2 if C or D is odd then ∗/
16 fp_isodd (D) == FP_YES) {
17 fp_add (C, y, C); /∗ C = (C+y)/2 ∗/
18 fp_sub (D, x, D); /∗ D = (D−x)/2 ∗/
19 }
20 fp_div_2 (C, C); /∗ C = C/2 ∗/
21 fp_div_2 (D, D); /∗ D = D/2 ∗/
22 }
23 if (fp_cmp (u, v) != FP_LT) { /∗ 6. if u >= v then ∗/
24 fp_sub (u, v, u); /∗ u = u − v ∗/
25 fp_sub (A, C, A); /∗ A = A − C ∗/
26 fp_sub (B, D, B); /∗ B = B − D ∗/
27 } else {
28 fp_sub (v, u, v); /∗ v − v − u ∗/
29 fp_sub (C, A, C); /∗ C = C − A ∗/
30 fp_sub (D, B, D); /∗ D = D − B ∗/
31 }
32 if (fp_iszero (u) == FP_NO) goto top; /∗ if not zero goto step 4 ∗/

– 184 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Listing 5 fp_invmod implements modular inversion using the binary extended Euclidean
algorithm (BEEA). This function is similar to Listing 4, but only supports odd numbers
as the second parameter.

1 /∗ c = 1/a (mod b) for odd b only ∗/
2 int fp_invmod(fp_int ∗a, fp_int ∗b, fp_int ∗c) {...
3 top:
4 while (fp_iseven (u) == FP_YES){ /∗ 4. while u is even do ∗/
5 fp_div_2 (u, u); /∗ 4.1 u = u/2 ∗/
6 if (fp_isodd (B) == FP_YES){ /∗ 4.2 if B is odd then ∗/
7 fp_sub (B, x, B);
8 }
9 fp_div_2 (B, B); /∗ B = B/2 ∗/

10 }
11 while (fp_iseven (v) == FP_YES){ /∗ 5. while v is even do ∗/
12 fp_div_2 (v, v); /∗ 5.1 v = v/2 ∗/
13 if (fp_isodd (D) == FP_YES){ /∗ 5.2 if D is odd then ∗/
14 fp_sub (D, x, D); /∗ D = (D−x)/2 ∗/
15 }
16 fp_div_2 (D, D); /∗ D = D/2 ∗/
17 }
18 if (fp_cmp (u, v) != FP_LT){ /∗ 6. if u >= v then ∗/
19 fp_sub (u, v, u); /∗ u = u − v ∗/
20 fp_sub (B, D, B); /∗ B = B − D ∗/
21 } else {
22 fp_sub (v, u, v); /∗ v − v − u ∗/
23 fp_sub (D, B, D); /∗ D = D − B ∗/
24 }
25 if (fp_iszero (u) == FP_NO) goto top; /∗ if not zero goto step 4 ∗/

Listing 6 wc_MakeRsaKey.

1 if (err == MP_OKAY) /∗ key−>d = 1/e mod lcm(p−1, q−1) ∗/
2 err = mp_invmod(&key−>e, &tmp3, &key−>d);
3 if (err == MP_OKAY) /∗ key−>n = pq ∗/
4 err = mp_mul(&p, &q, &key−>n);
5 if (err == MP_OKAY) /∗ key−>dP = d mod(p−1) ∗/
6 err = mp_mod(&key−>d, &tmp1, &key−>dP);
7 if (err == MP_OKAY) /∗ key−>dQ = d mod(q−1) ∗/
8 err = mp_mod(&key−>d, &tmp2, &key−>dQ);
9 if (err == MP_OKAY) /∗ key−>u = 1/q mod p ∗/

10 err = mp_invmod(&q, &p, &key−>u);

– 185 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Algorithm 3Modular inversion using the BEEA. In the optimized compact implementation
when the modulus is odd, highlighted (blue) statements are removed.
1: procedure modInv(u, modulus v)
2: bi ← 0 di ← 1, ui ← u, vi = v, ai ← 1, ci ← 0
3: while isEven(ui) do
4: ui ← ui/2
5: if isOdd(bi) then
6: bi ← bi − u, ai ← ai + v

7: bi ← bi/2, ai ← ai/2

8: while isEven(vi) do
9: vi ← vi/2
10: if isOdd(di) then
11: di ← di − u, ci ← ci + v

12: di ← di/2, ci ← ci/2

13: if ui > vi then
14: ui ← ui − vi, bi ← bi − di, ai ← ai − ci
15: else
16: vi ← vi − ui, di ← di − bi, ci ← ci − ai
17:

return di

Algorithm 4 Recovering p and q from trace of q−1 mod p.
1: procedure recover_pq(trace t, modulus N)
2: h← (−test_t(t, 1, 1), 1, 1, 1)
3: while h do
4: steps, b, p, q ← hpop(h)
5: if p.q = N then
6: return p, q
7: g ← (p, q), (p+ 2b, q), (p, q + 2b), (p+ 2b, q + 2b)
8: for ps, qs in g do
9: if mod(ps.qs, 2

b+1) = mod(N, 2b+1) then
10: hpush(h, (−test_t(trace, ps, qs), b+ 1, ps, qs))

– 186 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Algorithm 5 Recovering p and q from trace of e−1 mod λ.
1: procedure recover_pq(trace t, e, modulus N)
2: h← (−test_t(t, 0, e), 1, 1, 1)
3: while h do
4: steps, b, p, q ← hpop(h)
5: if p.q = N then return p, q
6: g ← (p, q), (p+ 2b, q), (p, q + 2b), (p+ 2b, q + 2b)
7: for ps, qs in g do
8: if mod(ps.qs, 2

b+1) = mod(N, 2b+1) then
9: φ = (ps − 1)(qs − 1)
10: for i = 1, . . . , 2` do
11: if psqs > N or mod(φ, 2i) 6= 0 then
12: continue
13: λ = φ/2i

14: newsteps = test_t_lamda(t, λ, e)
15: if newsteps >= b+ 1 then:
16: hpush(h, (−newsteps, b+ 1, ps, qs))

return fail

Listing 7 wc_ecc_mulmod_ex implements scalar multiplication using a bit-by-bit always-
add-and-double algorithm. The function protects against both timing and cache attacks
by executing dummy instructions. For brevity, error checking and code sections that are
not relevant to our attack are removed.

1 int wc_ecc_mulmod_ex(mp_int∗ k, ecc_point ∗G, ecc_point ∗R, mp_int∗ a, mp_int∗ modulus,
int map, void∗ heap) { ...

2 for (;;) {
3 if (−−bitcnt == 0) { /∗ grab next digit as required ∗/
4 if (digidx == −1) {
5 break;
6 }
7 buf = get_digit(k, digidx);
8 bitcnt = (int)DIGIT_BIT;
9 −−digidx;

10 }
11 i = (buf >> (DIGIT_BIT − 1)) & 1; /∗ grab the next msb from the multiplicand ∗/
12 buf <<= 1;
13 if (mode == 0) {
14 mode = i; /∗ timing resistant − dummy operations ∗/
15 err = ecc_projective_add_point(M[1], M[2], M[2], a, modulus, mp);...
16 err = ecc_projective_dbl_point(M[2], M[3], a, modulus, mp);...
17 }...
18 err = ecc_projective_add_point(M[0], M[1], M[i^1], a, modulus, mp);...
19 err = ecc_projective_dbl_point(M[2], M[2], a, modulus, mp);...
20 } /∗ end for ∗/...}

– 187 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Algorithm 6 Modular inversion using a variant of BEEA.
1: procedure modInv(u, modulus v)
2: u1 ← 1, u2 ← 0, u3 ← u
3: v1 ← v, v2 ← u1 − u, v3 ← v
4: if isOdd(u) then
5: t1 ← 0, t2 ← −1, t3 ← −v
6: else
7: t1 ← 1, t2 ← 0, t3 ← u

8: while t3 6= 0 do
9: while isEven(t3) do
10: if isOdd(t1) or isOdd(t2) then
11: t1 ← t1 + v, t2 ← t2 − u
12: t1 ← t1/2, t2 ← t2/2, t3 ← t3/2

13: if t3 > 0 then
14: u1 ← t1, u2 ← t2, u3 ← t3
15: else
16: v1 ← v − t1, v2 ← −u− t2, v3 ← −t3
17: t1 ← u1 − v1, t2 ← u2 − v2, t3 ← u3 − v3

18: if t1 < 0 then
19: t1 ← t1 + v, t2 ← t2 − u

return u1

Listing 8 The masking protection for ECDSA leaves the k−1 mod n operation vulnerable
to our single-trace attack.

1 mpi_mulm (dr, b, skey−>d, skey−>E.n);
2 mpi_mulm (dr, dr, r, skey−>E.n); /∗ dr = d∗r mod n (blinded) ∗/
3 mpi_mulm (sum, b, hash, skey−>E.n);
4 mpi_addm (sum, sum, dr, skey−>E.n); /∗ sum = hash + (d∗r) mod n (blinded) ∗/
5 mpi_mulm (sum, bi, sum, skey−>E.n); /∗ undo blinding by b^−1 ∗/
6 mpi_invm (k_1, k, skey−>E.n); /∗ k_1 = k^(−1) mod n ∗/
7 mpi_mulm (s, k_1, sum, skey−>E.n); /∗ s = k^(−1)∗(hash+(d∗r)) mod n ∗/

Listing 9 _gcry_ecc_ecdsa_sign computes the modular inverse of the blinding factor
b using a vulnerable function.

1 do { _gcry_mpi_randomize (b, qbits, GCRY_WEAK_RANDOM);
2 mpi_mod (b, b, skey−>E.n);
3 } while (!mpi_invm (bi, b, skey−>E.n));

– 188 –

CHAPTER 6. MICROARCHITECTURAL CRYPTANALYSIS

Listing 10 RSA_X931_derive_ex uses BN_gcd to compute λ(N), exposing p and q to
our attack.

1 if (!BN_sub(r1, rsa−>p, BN_value_one())) goto err; /∗ p−1 ∗/
2 if (!BN_sub(r2, rsa−>q, BN_value_one())) goto err; /∗ q−1 ∗/
3 if (!BN_mul(r0, r1, r2, ctx)) goto err; /∗ (p−1)(q−1) ∗/
4 if (!BN_gcd(r3, r1, r2, ctx)) goto err;

Algorithm 7 OpenSSL Binary GCD Algorithm.
1: procedure GCD(a, b)
2: s← 0
3: if a < b then
4: a, b← b, a

5: while b 6= 0 do
6: if isOdd(a) then
7: if isOdd(b) then . a is odd, b is odd
8: a← a− b, a← a/2
9: if a < b then
10: a, b← b, a

11: else . a is odd, b is even
12: b← b/2
13: if a < b then
14: a, b← b, a

15: else
16: if isOdd(b) then . a is even, b is odd
17: a← a/2
18: if a < b then
19: a, b← b, a

20: else . a is even, b is even
21: a← a/2, b← b/2, s← s+ 1

22: if s > 0 then
23: a← a ∗ (2s)

24: return a

– 189 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

Chapter 7

Revisiting Isolated and Trusted
Execution

In this final chapter, we first discuss various approaches to mitigate the discussed vul-
nerabilities on existing and future system (§7.1). Next, in Section 7.2, we discuss open
challenges and future opportunities for microarchitectural security. Finally, we conclude
our findings while providing an assessment check-list for microarchitectural cryptanalysis
in Section 7.3.

7.1 Countermeasure Discussions

This section discuses three different path in countering microarchitectural vulnerabilities
based on attack detection (§7.1.1), software hardening (§7.1.2), and architectural mitiga-
tions and fixes (§7.1.3). Finally, we report the coordinated disclosure process with vendors
regarding our findings (§7.1.4).

7.1.1 Attack Detection

Detect vulnerabilities when attackers are exploiting them at runtime is known as a cost-
effective approach for risk mitigation. Traditional intrusion detecting systems (IDS)
and antivirus software are typical examples of attack detection [86]. Generally, the
detection system alerts a high-privilege entity to respond to an alleged attack e.g., kill
the compromised process, shut down the machine, or report to an administrator. For
example, an IDS tailored for inspecting API calls and network traffic originating from a
TPM may detect attacks like the TPM-Fail conducted by network and user adversaries.
However, such detection techniques do not scale to all threat models like the system-level

– 190 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

adversaries. More importantly, IDS rules suffer from false positives and can be avoided in
most cases by determined adversaries; an adversary can introduce a random delay between
requests or combine the malicious requests with benign ones to circumvent detection.

Microarchitectural attack detection. Researchers have also proposed detection
techniques for microarchitectural attacks, e.g., to detect cache attacks in cloud envi-
ronments [52, 74, 389]. The hope is that developers can use dynamic tools to detect
attacks for microarchitectural vulnerabilities that cannot be mitigated at the system and
architecture level. Some of the proposed methods to detect cache attacks at runtime
utilize hardware performance counters [52, 389] and transactional synchronization ex-
tensions (TSX) [72, 311] to detect abnormal microarchitectural behavior. Proposals
based on performance counters that monitor cache activities such as the number of
cache misses are incapable of detecting MemJam or Spoiler, as the attack does not
introduce irregular cache activities. Although one might argue using other performance
counters for detection, e.g., two of the counters Ld_Blocks_Partial:Address_Alias
and Cycle_Activity:Stalls_Ldm_Pending have high correlations with Spoiler, its
practicality is debatable.

To engineer a microarchitectural detection system, a monitoring agent needs to occupy
an active thread and actively evaluate the number of memory stalls. In our experiments for
the MemJam case, performing 50 million observations takes less than a minute. If such
a detector exists, it has to monitor with a higher frequency than the attack; otherwise,
attackers will outperform it before detecting suspicious behavior is possible. Using TSX
as a detector with low false-positives would also not be practical since the read-after-write
hazards are common phenomena, and TSX could fail due to other issues [163], resulting
in a lot of false positives.

Detecting interrupts. Similarly, in the SGX world, detection of unexpected interrupts,
as proposed in the literature [72], may be applicable to mitigate CopyCat. CopyCat
relies on the ability to single-step enclaved execution, which is within Intel SGX’s threat
model [164, 351]. While SGX enclaves remain explicitly interrupt-unaware by design,
some research proposals [72, 311] retrofit hardware support for transactional memory to
detect suspicious interrupt rates as a side-effect of an ongoing attack. However, such
features are not commonly available on off-the-shelf SGX hardware, and they would not
fundamentally address the attack surface as CopyCat adversaries are likely to develop
stealthier attack techniques [353, 360] that remain under the radar of heuristic defenses.

Limiting factors for adoption. Generally speaking, detection techniques even for
well-understood attack vectors prone to false positives and false negatives. False positives

– 191 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

would essentially make a detection system undesirable since it reduces the quality of service
and stability. False negatives are cases when the detection system has failed to detect an
attack. In the context of microarchitectural attacks, detection techniques additionally
suffer from the following limitations:

1. Invisibilty: Commodity microarchitectures do not have dedicated sensors for
monitoring security-critical events. Previous work exploits CPU features not designed
for security, which are fundamentally inaccurate and limited in the visibility of what
happens inside the processor.

2. Partial coverage: Proposed detectors address only an instance of an attack or a
small number of attacks; they generalize to new cases of attacks or, worse unknown
attack vectors. With this lack of generalization, it is not convincing to deploy these
mitigations because one can always use a slightly different technique to compromise
the same security guarantees.

3. Naive attackers: Previous detection techniques assume that the attackers are
naive and always execute the same code sequence to exploit microarchitectural
attacks. However, in practice, if an attacker were after executing these attacks,
they could make it stealthier by obfuscating their footprint or adding delays, as
mentioned earlier.

These problems contribute to microarchitectural attack detection, rarely being consid-
ered a practical solution. The lack of visibility is mostly due to the obscurity of processors.
If processor manufacturers decide to provide more runtime information or dedicate special
sensors, this could improve detection techniques. However, we are unsure if there is enough
incentive for chip manufacturers to create more visibility about the processor’s operations.
Note that adding more visibility is also counter-intuitive to protecting intellectual property,
as competitors can use these interfaces to reverse engineer and gain more insights about
the underlying design.

In FortuneTeller [135], we have proposed a detection technique based on profiling
the expected/benign behavior of applications using neural networks. Although the lack
of visibility still limits our strategy, we could still improve over the other two restricting
factors by demonstrating better false positive and false negative rates and detecting
attacks not observed before. However, we believe that the incentive to use detection
systems, in general, even if they function with outstanding performance, will depend on if
we see attackers exploiting microarchitectural vulnerabilities.

– 192 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

7.1.2 Hardening Applications

Attacks such a MemJam or CopyCat exploit secret-depend memory operations and
branches with a high spatial resolution. These attacks rely on finding such vulnerable
patterns in the victim application. However, attacks like the Medusa do not rely on
the code pattern or presence of code gadgets in a victim application. Researchers and
engineers have pursued several software-based methods to harden applications against
microarchitectural attacks when it is possible for the former.

Constant-time programming. Constant-time techniques can prevent some side chan-
nels in software and have already seen some adoptions by researchers and practition-
ers. Tromer et al. proposed several strategies such as alternative lookup tables, data-
independent memory access patterns, static or disabled cache, and cache state normaliza-
tion to defend against cache timing attacks [340]. Some RSA and ECC implementations
use the scatter-gather technique to hide the secret-dependent cache access footprint [51].
These techniques generally incur additional development and execution costs; such hard-
ened constant-time implementations are usually designed by experts who know the
underlying architecture and side-channel domain. Indeed, the analyzed cryptographic
implementations use some measures to prevent well-known leakages, though they have
come short of protecting against our discoveries.

In the IPP Crypto library, the Cipher_DES and Safe2Encrypt_RIJ128 achieve
consistent cache-access pattern by ensuring that the same cache lines are accessed
every time regardless of the processed data. The 4-byte spatial resolution of MemJam,
however, thwarts this countermeasure by providing intra-cache-line visibility. Attacks such
as MemJam show that uniform cache access pattern, cache state normalization [340]
and scatter-gather technique [51] fail to protect cryptographic implementations. One
approach to restore security and protect against MemJam is to apply constant memory
accesses with a 4-byte granularity. That would require accessing every fourth byte of the
table for each memory lookup to maintain a uniform memory footprint. At that point,
it is easier to access all entries each time, resting assured that there is no other hidden
effect in the microarchitecture resulting in a leak with byte granularity.

Similarly, to mitigate the timing vulnerabilities of TPM-Fail, the standard defense
is to deploy constant-time techniques as firmware and software patches or replace the
vulnerable TPM when patching is not feasible. Intel has promised patches for Intel fTPM,
which Intel Management Engine executes these updated patches. We also provided our
tools and techniques to STMicroelectronics and evaluated new versions of their products
based on our findings. For a high-precision and deterministic attack like CopyCat, right
now, the best practice for cryptographic implementations is to avoid secret-dependent

– 193 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

branches and memory lookups altogether. WolfSSL applied such a countermeasure to
mitigate our attack on ECDSA. Bernstein and Yang proposed a constant-time GCD
algorithm for applications like modular inversion [34]. After our report to OpenSSL and
Libgcrypt developers, they have adopted this constant-time algorithm.

Hardware extensions and Bitslicing. For symmetric encryption schemes with specific
efficiency requirements, the best approach should rely on a dedicated hardware accelerator
e.g., AES-NI, since constant-time software implementations are relatively slow. If possible,
such performant yet constant-time instruction set extensions should exclusively be used
to protect the targeted implementation efficiently. Another approach that is suitable
for some schemes such as DES and AES is to use bitsliced software implementations as
they avoid memory-related side channels [29]. For ciphers where hardware support is not
available, a true constant-time implementation e.g., based on bit-slicing, seems to be
the best, albeit slow, alternative. Intel IPP has different variants optimized for various
generations of Intel instruction sets [170], and it features other implementations of AES
and SM4 in these variants. As shown, the software-only variant of each of the analyzed
ciphers is vulnerable to MemJam.

Algorithm tricks. It is preferable to avoid secret-dependent branches, and memory
accesses altogether. Some cryptographic schemes can still benefit from reformulating the
algorithm without violating its original input, output, and promised security operation. As
mentioned in Section 6.4.4, masking the modular inversion input can mitigate one of our
demonstrated attacks if appropriately applied, and the blinding value itself is protected.
For example, after our report, WolfSSL applied this solution to mitigate our attack on
DSA. Some mathematical operations also have alternative implementations that are easier
to implement securely. For example, regarding the attack on q−1 mod p RSA-CRT key
generation, we can use the Fermat’s Little Theorem computes qp−2 mod p. As a result,
the implementation can avoid modular inversion for this operation. Instead, it relies on a
modular exponentiation implementation, which happens to be easier to implement securely.
However, the previous chapter’s evaluation clearly shows that the instruction-granular
page access traces extracted by CopyCat or the intra-cache-line memory access pattern
from MemJam are more substantial, e.g., one could leak the masking value. Hence, they
can target more vulnerable code patterns than prior attacks. Implementations should
avoid secret-dependent code paths altogether.

Compiler-based enforcement. Constant-time implementations are not easy to apply,
and this is even more difficult for general-purpose applications [323]. Broadly, researchers
have also proposed tools to automate the generation of code lacking software-based

– 194 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

leakages for further microarchitectural side-channel leakage. For example, Raccoon [277]
enforces constant-time control flow but stops at the cache-line granularity and makes use
of ORAM, which can be very costly. Escort [278] and EncLang [315] also transform code
to constant-time representation. EncLang stops at page-level granularity and requires
adoption of a new programming language. Escort is not focused on efficient protection
against memory side channels and only focuses on arithmetic operations. While these tools
address memory leakages, they would need further fine-tuning to address high-resolution
attacks like MemJam with 4-byte and CopyCat with instruction-level spatial granularity.
While it is more efficient to execute, limited spatial resolution for a defense approach still
leaves the door open to attackers.

In particular, to defend generic secret-processing applications against CopyCat,
we encourage future research in improved compile-time hardening techniques that may
automatically rewrite conditional branches to ensure a constant interrupt counting pattern,
regardless of the executed code. The essential requirement would be to ensure that the
adversary observes a secret-independent sequence of pages and always counts the same
number of instructions between page transitions. The compiler would also have to be
explicitly aware of macro fusion, as explained in Section 4.2.2 when balancing the observed
instruction counts. We expect further challenges when dealing with secret-dependent loop
bounds. One could potentially combine control-flow balancing with existing solutions for
data location randomization to handle data accesses as well [47].

Speculative constant-timeness. Spoiler attack exploits the fact that when there
is a load instruction after several store instructions, the physical address conflict causes
a high timing behavior. This phenomena happens because of the speculatively executed
load before all the stores are finished executing. No software mitigation can completely
erase this problem. However, inserting store fences between the loads and stores
would block this timing behavior. Another yet less robust approach is to execute other
instructions between the loads and stores to decrease the depth of the attack. Note
that defenders can not apply these approaches to the user’s code space, i.e., the user can
always leak the physical address information to amplify other attacks. However, we can
apply them to context switching inside the OS with some performance overhead to avoid
cross-domain tracking of memory access patterns. Spoiler and more broadly Spectre
attacks [207] highlight how constant-time behavior is more challenging to maintain in the
microarchitecture’s speculative domain. As a result, the notion of constant-time behavior
now has a speculative component in which applications need to make sure speculative
access to secrets will not result in visible footprints. In this direction, Cauligi et al. have
proposed constant-time foundations for the speculative behavior of programs [66].

– 195 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

Finding leakage. Our findings show the importance of stricter verification of cryp-
tographic implementations, especially in the context of trusted computing. To ensure
that code does not feature memory leakage, researchers have proposed analysis tools
to verify constant-time properties [19]. MASCAT [185] is a static code analysis tool,
and wang2017cached [359] is a dynamic symbolic execution analyzer to detect cache
leakages in software implementations. On the same direction, Langley’s ctgrind and
ct-verif [19] propose compiler-level verification techniques. Although engineers may
extend these identification techniques to support an intra-cache-line leakage model, there
is only one proposal that practically considers this sensitive leakage model [93]. In
MicroWalk, we proposed a tool based on dynamic binary instrumentation and mutual
information analysis to find software-based leakages in cryptographic libraries [368]. Our
tool support configurations to match several leakage model and spatial granularity. As a
result, one can use MicroWalk to find intra-cache-line leakages with an arbitrary choice of
granularity.

We expect that extending a tool like MicroWalk to find further generic applications’
leakages, and not only cryptographic leakage, will be a valuable contribution. Making such
tools would be an essential step toward TEE applications’ security analysis due to their
unique attacker model described in our work. Users use TEEs for several privacy-preserving
applications, and it is not clear how attacks like CopyCat would affect the privacy and
security of these applications.

7.1.3 Architectural Fixes and Mitigations

Microarchitectural vulnerabilities have resulted in short-term and long-term mitigations at
various architectural levels, i.e., hardware, operating systems, and runtime environments.
We now discuss some of these efforts.

Blocking precise timing. For most attacks on JavaScript, removing accurate timers
from the browser would decrease attackers’ chances to exploit Spoiler, MemJam, and
Medusa. Indeed, some web browsers have removed timers or distorted them by jitters as
a response to attacks [224]. However, such ad-hoc approaches are generally ineffective in
the long run; there is a wide range of timers with varying precision available, and removing
all of them seems impractical [110, 301].

Similarly, one may try to mitigate the user and network instance of the TPM-Fail
attack by disturbing precise time measurement. The OS can add a pre-determined delay
to the TPM interface for TPM commands to ensure that it is executed in a constant-time
fashion. However, this requires precise estimation of an upper bound for the execution time
for these operations. This estimation is not trivial since the execution times vary among

– 196 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

different TPMs. Also, concerning the physical adversarial model of secure co-processors,
this approach would only make sense if deployed inside the TPM.

Tweaking SMT. Some attacks such as Medusa and MemJam directly affect simulta-
neous multithreading (SMT) like hyperthreading. In particular, there is no way to prevent
MDS attacks on CPUs before the 10th Intel generation (Ice Lake) when hyperthreading is
enabled. Although Intel claims that workloads can run securely with hyperthreading if
group scheduling is implemented [157], we are not aware of any commodity operating sys-
tem implementing group scheduling. Similarly, MemJam highlights the combined effect
of hyperthreading and false dependency and its impact on application security. Hence, we
stress that hyperthreading has to be disabled to prevent Medusa and MemJam entirely.
Disabling SMT for microarchitectures affected by vulnerabilities like above is not generally
a desirable outcome due to loss of performance and net gain. As a result, hardening SMT
against microarchitectural side channels for future hardware has got attention [337].

Microcode patches for MDS. We have not experienced a vendor like Intel issuing
microcode patches or a clear mitigation plan for microarchitectural side channels leaking
memory access patterns. On the other hand, to prevent the exploitation of MDS attacks
including Medusa during context switching, Intel suggests a microcode update that
retrofits the VERW instruction with the side effect that it clears the store buffer, fill buffer
and load ports. Schwarz et al. [300] have shown that ZombieLoad can, unfortunately,
circumvent this mitigation. As a result, the only practical solution is to flush the L1 data
cache across context switching as well. However, flushing the store buffer, fill buffer, load
ports, and L1 data cache on every privilege-level context switching incurs non-negligible
performance overhead.

Although more recent CPUs, like the Cascade Lake and Coffee Lake (9th generation)
are promised to be MDS resistant, there are still variants of ZombieLoad which work on
these CPUs by leveraging microcode assists caused by Intel TSX. Similarly, Medusa can
benefit from TSX, and it works on these CPUs. Hence, even on some MDS-resistant
CPUs, Intel TSX has to be disabled to ensure that MDS cannot leak any data. While
Intel TSX cannot be disabled directly, a workaround is to ensure that all TSX transactions
abort immediately by setting the MSR_TSX_FORCE_ABORT model-specific register. As a
consequence, Intel TSX cannot be used for fault suppression any more.

MDS-testing microcode patches with Transynther. Intel announced that the
newest microarchitectures, namely Cascade Lake and Ice Lake, were not affected by MDS.
While Cascade Lake turned out to be vulnerable to the ZombieLoad v2 MDS attack
(also known as TAA), Ice Lake was not affected by this attack. Using Transynther,

– 197 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

we show a variant of MDS attack, also known as Fallout [61], that works on Ice Lake
CPUs. Ice Lake is reported to be unaffected by all MDS attacks [167, 169]. Intel has
also explicitly listed Ice Lake processors as not being vulnerable to LVI-SB [349], which
exploits Fallout for Load Value Injection [168]. Transynther automatically synthesized
this finding. Based on these findings, we analyze different microcodes regarding this
issue, showing that only microcode versions after January 2020 prevent exploiting the
vulnerability. These results show that Transynther is a valuable tool to find new
variants and test for regressions possibly introduced with microcode updates.

We ran Transynther on a Core i5-1035G1 CPU with the latest microcode shipped
with Ubuntu 18.04, version 0x48. After running for about 5000 iterations, Transynther
reported store-to-load-forwarding leakage due to 4K aliasing of store addresses with a
faulty memory load. Fallout initially exploited this behavior to bypass KASLR and leak
cryptographic keys from the kernel space [61]. Based on the generated proof-of-concept,
we produced a minimal working example to analyze the auto-generated proof of concept
that triggers this condition manually. We noticed that store buffer leakage on Ice Lake
only works with memory load operations that suffer a permission failure due to accessing
privileged memory (cleared US bit) or accessing a memory page with wrong protection
keys [62]. Based on the systematization of Canella et al. [62], and to the best of our
knowledge, we conclude that Ice Lake is only vulnerable to Meltdown-US or Meltdown-MPK
attacks.

One of the observations from Transynther is that the leakage rate increases
significantly if the target store address is flushed from the cache. We observe the same
behavior for other instructions that modify the cache state. Specifically, executing lock
incl on the store address leads to an even higher leakage rate than flushing the store
address using clflush. Listing 11 shows our simplified proof of concept that demonstrates
store buffer leakage on the Ice Lake microarchitecture. Uncommenting Line 6 or 7 modifies
the store address’s cache state, resulting in a faster leakage. If we do not modify the cache
state, we observe a very slow leakage of approximately 1B/s. As we can see in Table 7.1,
with approximately 750B/s, the leakage rate is significantly higher when using lock inc
instruction (Line 19) to modify the cache state.

We also tested the proof-of-concept on various microcode versions on the Ice Lake
CPU. As not all issued microcodes are officially available by CPU vendors, we used a
crowd-sourced repository of available microcodes [119]. For our analysis, we applied
ten different compatible microcode versions, i.e., microcodes that match the CPUID of
our target CPU. As we can see in Table 7.1, all Intel microcodes until mid-November
are vulnerable to store buffer data sampling, although Ice Lake should fundamentally be
resistant against all MDS attacks.

– 198 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

Listing 11 Proof of concept for store buffer data sampling on IceLake.

1 /∗∗ asm.S ∗∗/
2 .global s_faulty_load
3 s_faulty_load:
4 lea address_normal+0x4822, %r14 // Store address
5 lea address_supervisor+0x822, %r15 // Load address (4K alias)
6 //clflush (%r14) // Uncomment to modify cache state
7 //lock;incl (%r14) // Uncomment to modify cache state
8 movb $0x41, (%r14) // Store
9 movb (%r15), %al // Faulty Load

10 lea oracles, %r13 // Encode
11 and $0xff, %rax
12 shlq $12, %rax
13 movb (%r13,%rax,1), %al
14 ret

Our report shows that Intel Ice lake client processors with early firmware versions
are vulnerable to MDS attacks. In discussions with Intel engineers, we were told that
mitigations for store buffer data sampling are present in hardware but disabled in early
versions of these processors. OEMs and users must apply these latest microcode updates
to enable protection against MDS attacks.

Future hardware. Researchers have also suggested several hardware designs in response
to some of the microarchitectural attacks. For example, researchers have proposed a
custom memory manager [391], relaxed inclusion caches [198] and solutions based on
cache allocation technology (CAT) such as Catalyst [225] and vCat [379] to defend
against cache attacks. However, known Hardware solutions to defend against cache
attacks generally ignore leakages through false dependency. Relaxed inclusion cache is a
secure counterpart to the inclusive LLC, which only aims to defend LLC contention [198].
Solutions such as CacheBar [391], Catalyst [225] and vCat [379], which isolate the LLC
between different security domains, are not scalable to thwart the MemJam attack, which
exploits leakage in the L1 cache. Sanctum [78] is a secure CPU design that uses page
coloring to isolate cache. Further, they flush the L1 and TLB cache during context switch
from/to secure enclaves. Ozone [24], as a zero timing leakage CPU, aims to defend
against such leakages by allocating a constant computational resource to one execution
thread per core ignoring the hyper-threading model.

Some processor vendors may revise the hardware design for the memory false depen-
dency checking and resolution to prevent Spoiler and MemJam, but modifying this

– 199 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

MC Version MC Date Vulnerable Leakage (bytes/s)
clflush lock inc Unmodified

0x32 (stock) 2019-07-05 4 577.87 754.99 1.58
0x36 2019-07-18 4 148.24 529.84 0.62
0x46 2019-09-05 4 130.15 695.80 0.11
0x48 2019-09-12 4 271.69 620.07 0.59
0x50 2019-10-27 4 96.54 542.10 0.25
0x56 2019-11-05 4 145.46 751.40 0.08
0x5a 2019-11-19 4 532.40 645.32 0.70
0x66 2020-01-09 8 0 0 0
0x70 2020-02-17 8 0 0 0
0x82 2020-04-22 8 0 0 0
0x86 2020-05-05 8 0 0 0

Table 7.1: List of tested microcodes on a Core i5-1035G1 CPU. For vulnerable microcodes,
the leakage rate is much higher if the target store is in a modified state, as it is shown by
using cache flush and modification instructions. We ran each experiment for two minutes.

component may cause performance impacts if not done carefully. For instance, partial
address comparison was a design choice for performance. Full address comparison may
address this vulnerability but will also impact performance. Note that microcode patches
are generally difficult to be applied to these components as they shape the core of the
microarchitecture. Therefore, having a vulnerability at this stage will impact legacy
systems for many years to come.

For MDS and transient executions due to the memory subsystem, future CPUs may
adopt more advanced resource sharing and partitioning countermeasures to circumvent
such attacks [87, 337]. Besides, we have already seen that some of these resources, e.g.,
the store buffer on Intel Core microarchitecture [2, 187], are statically partitioned and
cannot be used in cross-process side-channel attacks. However, as resource sharing is
inevitable for core performance, removing the root cause for Meltdown-type attacks seems
to be a more fundamental solution. As we discuss in Section 3.4.2, MDS and Meltdown
vulnerabilities that affect some of the processor vendors are due to specific optimizations
regarding how the pipeline handles microcode assists and pipeline flushes. Some designs
may benefit in terms of performance and circuit space from delaying the handling of
hazards to a later stage during instruction retirement. Flushing the pipeline as soon as
a hazard occurs requires a more complex logic for identifying invalid instructions and
flushing the pipeline. Such a design further has to consider all the performance constraints
and memory bottlenecks. We expect to see more research in the future on the effect of
different strategies for handling such hazards and their security implications.

– 200 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

Concerning future hardware mitigation for CopyCat, recent work [266] proposes
modifications to the Intel SGX architecture to rule out page-fault controlled channels
by delegating paging decisions to the enclave. The proposed design modifies the CPU
to no longer report the faulting page base address to the untrusted OS and to not
update “accessed” and “dirty” page-table attributes when in enclave mode. While these
modifications would indeed thwart the deterministic spatial dimension of the CopyCat
instantiations described in this paper, we expect that adversaries may adapt by resorting
to alternative side-channel oracles to construct instruction-granular page access patterns.
A particularly promising avenue in this respect would be to combine CopyCat interrupt
counting with the distinct timing differences observed for unprotected page-table entries
brought into the CPU cache during enclaved execution [353]. Nevertheless, following a
long line of microarchitectural attacks abusing interrupts [153, 218, 245, 351, 352], our
study provides strong evidence that interrupts may also amplify deterministic controlled-
channel leakage and should be taken into account in the enclaved execution threat model.
We advocate for architectural changes in the Intel SGX design and further research to
rule out interrupt-driven attack surface [56].

7.1.4 Coordinated Vulnerability Disclosure

Responsible disclosure and working with vendors who have access to the required resources
to fix these vulnerabilities are essential to countering our findings. We have reported
our findings to vendors during several stages of our work as part of coordinated and
responsible disclosure. Here we provide a summary of the progress, disclosure timeline,
and their response to these reports.

MemJam. We reported MemJam to the Intel Product Security Incident Response
Team (PSIRT). They have acknowledged the receipt and confirmed that they would
update the Intel IPP library to mitigate MemJam. Here is the timeline in more detail:

• 08/02/2017: We informed our findings to the Intel PSIRT.

• 08/04/2017: Intel PSIRT acknowledged the receipt.

• 11/07/2017: Safe2Encrypt_RIJ128 was removed from the SGX SDK.

• 11/17/2017: Intel PSIRT assigned CVE-2017-5737 and confirmed a work-in-
progress patch for the IPP library.

• 05/10/2018: Intel PSIRT published an update for the IPP library with CVE-2018-
3691.

– 201 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

Although Intel has mitigated the impact of MemJam on their cryptographic software by
avoiding encryption schemes with memory lookups, we are not aware of any vendor’s plan
to address the hardware’s root cause.

Spoiler. We informed the Intel PSIRT of our findings for Spoiler. iPSIRT thanked
us for reporting the issue and for the coordinated disclosure. iPSIRT then released the
public advisory and CVE. However, they did not disclose any plan to address the root
cause of this vulnerability. Here is the time line for the responsible disclosure:

• 12/01/2018: We informed our findings to iPSIRT.

• 12/03/2018: iPSIRT acknowledged the receipt.

• 04/09/2019: iPSIRT released public advisory (INTEL-SA-00238) and assigned
CVE (CVE-2019-0162).

Transynther and Medusa. We disclosed our findings regarding Medusa to Intel
PSIRT on June 24, 2019. iPSIRT has acknowledged the receipt on the same day. Intel
confirmed that the WC is part of the fill buffer, so they will not issue a separate plan for
mitigating this attack technique. However, they asked us to keep the paper under embargo
until November 12, 2019, as we exploit TSX Asynchronous Abort (TAA, CVE-2019-11135)
in several proof of concepts [175].

We have also reported our finding regarding store buffer data leakage on Ice Lake to
Intel PSIRT on March 27, 2020. On May 5, 2020, iPSIRT completed the triage of our proof
of concept. They replied that the mitigation for store buffer data sampling was not ported
correctly to the Ice Lake microarchitecture. As a result, Ice Lake required a microcode
patch, which they developed as part of their late November 2019 microcode version 0x5C.
In the May 2020 update of Intel’s specification update for the 10th Generation Intel
Core Processor Family, a new errata, 057, has been added. This errata mentions that
the MDS_NO bit in IA32_ARCH_CAPABILITIES control registers were incorrectly set [179].
Intel requested an embargo until July 14, 2020, to allow enough time for OEMs and their
customers to deploy these patches. Intel credited us by updating the advisory regarding
Microarchitectural Data Sampling on July 14, 2020 [165]. Later on, during the summer
of 2020, we have shared Transynther with Intel engineers and discussed potential
ways to integrate this tool into their future pre-silicon and post-silicon security testing
future products.

CopyCat. We shared our attack with the Intel PSIRT, who acknowledged that Copy-
Cat leaks side-channel information, but re-iterated that protecting against side channels

– 202 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

requires the enclave developer to follow the constant-time coding best practices as advised
by Intel [180]. We reported the weaknesses in WolfSSL in Nov. 2019 and provided guide-
lines for mitigation for the cryptographic libraries, tracked via CVEs 2019-1996{0,1,3} and
CVE-2020-7960. We reported our findings to OpenSSL and Libgcrypt teams in Feb. 2020.
OpenSSL replaced BN_gcd with a constant-time implementation [34] in version 1.1.1e.
Libgcrypt issued a similar fix that will appear in version 1.8.6. Later on in Sep. 2020, we
discussed with CopyCat with Intel and the potential impact on future products. They
have shown interest in mitigating the root cause of CopyCat, but we are not aware of
how they will address this class of attacks within the hardware.

TPM-Fail. We informed the Intel PSIRT of our findings regarding Intel fTPM on
February 1, 2019. Intel acknowledged receipt on the same day and responded that an
outdated version of Intel IPP had been used in the Intel fTPM on February 12, 2019.
Intel assigned CVE-2019-11090 and awarded us separately for three vulnerabilities. We
informed STMicroelectronics of our findings regarding the TPM chip flaw on May 15,
2019. They acknowledged receipt on May 17, 2019. Later, After patching the firmware
for their TPM, STMicroelectronics provided us an updated TPM product that we have
verified to be resistant against TPM-Fail. The embargo date for all these issues was set
to November 11, 2019.

7.2 Open Problems

This section outlines some of the open problems in this space. We first discuss the
limitation of our work for general-purpose software and potential opportunities in this
direction (§7.2.1). Then, we discuss other open problems related to expanding such
analysis to nonubiquitous and heterogenous microarchitectures (§7.2.2).

7.2.1 General-purpose Software

As its name suggests, microarchitectural cryptanalysis shows the impact of microarchitec-
tural vulnerabilities on specific applications. However, these attacks can fundamentally
leak information about general-purpose applications as well. Apart from the data leakage
enabled by transient execution attacks, evaluating the impact of microarchitectural side
channels on various privacy- and security-critical applications that are not necessarily
cryptographic operations is critical for understanding the attack landscape. Lack of this
understanding contributes to confusion for designers who care about microarchitectural
side channels. For example, a designer may assume that leaking side-channel information

– 203 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

is not relevant to a particular processor because customers are not executing cryptographic
operations. We have seen some efforts by the community to apply cache attacks to
demonstrate key stroke recoveries [215, 222], privacy leakage of web application [136],
reconstructing private databases [308], and recovering machine learning models [381].
However, we believe there is still a lot more work to do in this direction:

Automated analysis of general-purpose applications. Despite these manual ef-
forts to demonstrate leakage on applications [134, 215, 308, 381], we have not seen
practical tools like MicroWalk to show leakage of any programs in the presence of a
particular attack model. A significant challenge in designing such tools is the infinite
input space for general-purpose applications. Cryptographic implementations, deep-neural
network models, or keystrokes are still applications with a limited input space. Under-
standing microarchitectural side-channel leakage for data-intensive applications processing
arbitrary data and protocol formats is at least as challenging as the automated discovery
of traditional software vulnerabilities. The latter is a problem that researchers have been
working on for a couple of decades, proposing various techniques based on fuzzing [11, 121],
taint analysis [258], or symbolic execution [324]. We are unsure if we can adopt similar
techniques to ease the impact evaluation of microarchitectural leakage on general-purpose
applications.

Incoporating new attack models. CopyCat is a prime example of an attack that
opens up a different threat model and impacts general-purpose applications. Although we
have shown a simple example of how this technique can bypass previous code hardening
schemes, we did not evaluate its impact on various general-purpose applications. The
limitation is that it is challenging to perform the manual analysis we did for cryptographic
implementations with domain knowledge for arbitrary applications. However, one may ask
Why we should care about the impact of this particular on general-purpose applications.
The answer to this question has two components.

First, the powerful system-level threat model applied to CopyCat applies to TEEs
other than SGX as well. For example, other researchers have shown high-resolution cache
attacks enabled by adversarial OS to ARM TrustZone [287]. TEEs, despite all the side-
channel issues, have become a defacto standard for privacy-preserving computing [217],
which means developers deploy general-purpose logic inside TEEs. Considering both
the use case and the much higher capabilities of attacks on TEEs, we expect to see
microarchitectural attacks being efficient on the general-purpose application running inside
TEEs.

Second, the specific leakage pattern of an attack like CopyCat has not been
concerned in previous attacks on general-purpose computation. Previous demonstrations

– 204 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

only focus on the cache access pattern, but the leakage pattern is fundamentally crucial
to understand the impact of leakage on these applications. Similarly, there are other kinds
of microarchitectural side channels that have different leakage model [104, 246, 380].
Therefore, analysis tools or attack demonstrations should go beyond cache attacks to give
a more broad picture of these attacks’ impact on general-purpose applications.

7.2.2 Nonubiquitous and Heterogenous Architecture

Automated testing of nonubiquitous processors. In Transynther, we mainly
focussed on Intel CPUs. While Medusa is a vulnerability we only discovered on Intel
CPUs, the general approach of Transynther applies to different CPUs. We also used
Transynther on AMD, showing that AMD also forwards data after certain exceptions,
a requirement for Meltdown-type attacks. We could not find any variant on AMD that
leaks data across a security boundary. We also focused on the similar ubiquitous microar-
chitectures during our work on MemJam and Spoiler. Classifying these vulnerabilities
on a standard microarchitecture is beneficial for advancing microarchitectural security.
On the other hand, we need similar analysis tools and techniques for nonubiquitous
microarchitectures to fulfill security engineering needs.

However, such analysis requires automated tools that scale to several different mi-
croarchitectures. For example, we may extend Transynther to entirely different
microarchitectures, such as ARM or RISC-V. Although the approach is the same, porting
Transynther to a different instruction set requires a new backend that generates
assembly code for the targeted architecture. As our tool is open source, we encourage
researchers to port Transynther to different architectures to analyze whether they
suffer from similar vulnerabilities.

In the same direction, we need tools to automatically analyze other processors for
attacks such as Spectre, MemJam, or Spoiler. We expect even to see new microarchi-
tectural vulnerabilities that have not been seen before on Intel processors. Such analysis
is especially becoming more relevant to the current trend in processor design and the
speeding evolution of computer microarchitectures.

Heterogeneity. Heterogenous microarchitectures, combining several different process-
ing technologies such as FPGA, GPU, and CPU into a single system on a chip (SoC),
are trending. Depending on the performance requirement and applications, sometimes
these designs introduce tightly-connected interfaces, including shared memory resources
between different components. In collaboration with Intel, we have started looking into the
security of integrated FPGA-CPU systems. Our easier work on JackHammer [367] shows
that microarchitectural security has new and exciting challenges for such integrations.

– 205 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

Microarchitectural security for heterogenous microarchitectures are still in infancy, and
yet we do not even have a solid understanding of how isolation boundaries should look
like for these systems. Adding this new complexity with nonubiquitous systems suggests
that the work conducted in these dissertations may expand much further in the next few
years in these new avenues.

7.3 Finale

This section concludes this dissertation by providing an assessment check-list for microar-
chitectural security testing and highlighting the key takeaways.

7.3.1 Assessment check-list

As we have extensively discussed, there are several challenges in the future regarding
identifying these vulnerabilities in other systems and efficiently mitigating them. Our
findings can not cover and fix all the microarchitectural vulnerabilities in the future or
other processors and computing hardware. Even with all the efforts into mitigations and
countermeasures described in Section 7.1, there will still be vulnerabilities. Therefore, based
on microarchitectural cryptanalysis, we conclude our findings by providing a vulnerability
assessment check-list.

Step 1. Identifying shared resources: Security engineers should identify shared
components across security boundaries. If the security boundaries are not clear, this is
even more difficult, e.g., some heterogeneous systems do not have clear security boundaries.
These boundaries also define the trust model. For example, a TEE may share some or
all CPU resources with untrusted applications or components. After identifying which
components are shared across security boundaries, we should see if they are directly
accessible to the software. Note that access to software could include specific instructions,
IO operations, or configuration spaces and registers. For example, we have seen that
some configuration registers accessible to a privileged adversary enable new attacks on
TEEs [251].

Step 2. Prototyping attacks: Prototyping naive covert channels are generally the
first step to see if two security boundaries can create a noncanonical communication
channel. After that, we can create a proof-of-concept attacking an already well-understood
and simple victim application or workload that gives more insights into whether one can
turn the identified shared component into an attack vector. At this stage, combining

– 206 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

several different known attack techniques may reveal new violations of security boundaries.
It is crucial to remember that attackers can always combine multiple architectural and
microarchitectural vulnerabilities [224, 349]. This step may reject the hypothesis that
there will be any security issue associated with a shared component. Alternatively, we may
see some potential sources of leakage, but we can not always be sure about its security
implications. Therefore, it is crucial to combine this step forth and back with the next
step.

Step 3. Identifying security-critical software: With a proof-of-concept in hand,
we can identify the realistic and security-critical software running on this processor. In
our work, we have mostly identified cryptographic implementations running on the CPU.
However, for general-purpose superscalar CPUs, it is intuitive to assume that any data-
processing application may suffer from these vulnerabilities. Additionally, a complex
SoC may include several customized accelerators for different purposes. It is important
to remember that even though cryptographic implementations are generally the most
vulnerable, they will not be the only affected software.

Step 4. Demonstrating the impact: Without Demonstrating the impact with
realistic case studies, it is generally not clear what should be mitigated or if one should
prioritize addressing potential weaknesses. A working proof of concept sheds light
on understanding the problems accurately and responds appropriately. We discussed
several of the failed countermeasures in our work due to such a lack of end-to-end
understanding of a vulnerability from a high-level hypothesis to low-level engineering
challenges. Demonstrating impact answers critical questions such as:

1. What can be compromised?

2. How efficient is the attack?

3. What are the requirements for the attackers?

These questions essentially provide us enough information for the next stage. One reason
vendors and industry did not take microarchitectural vulnerabilities seriously in the earlier
days was this lack of impact demonstration. However, we see that thanks to recent findings
of transient execution attacks and several iterations of MDS, the industry essentially
have a more clear picture if they should allocate resources to these problems. Our
microarchitectural cryptanalysis essentially takes this understanding to the next level by
demonstrating end-to-end proof of concepts. However, similar techniques may apply to
general-purpose applications [308].

– 207 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

Step 5. Prioritizing mitigation plans: We can work across several engineering and
research teams developing mitigating plans based on the attack’s impact. Short-term
mitigation generally constitutes software-based hacks or more complex compiler-level
designs. Ultimately, depending on the severity of these issues and performance impact,
future hardware designs may incorporate the findings into fixing these issues altogether or
provide some hardware support for the software to deal with these vulnerabilities more
efficiently.

Putting it together. We may not always take the steps described above in the same
order, but it is crucial to go over several iterations based on our experience. Almost
every shared computing infrastructure has at least tens of different shared components
and interfaces, so it would be naive to assume that a processor is inherently secure
against software-based microarchitectural attacks at first glance. Significantly, the first
few steps are much trivial when engineers have access to design artifacts. In our work,
we had to spend a lot of time on the first two steps due to the closed-source nature of
commodity CPUs we have studied in this dissertation. We have developed several tools for
precise microbenchmarks, automated microarchitectural and software analysis tools, and
simulation during each of these stages. Based on this experience, we expect practitioners
always to remember the importance of automated tooling to speed up such analysis.

7.3.2 Conclusion

This dissertation has expanded the understanding of microarchitectural attacks by intro-
ducing several new attack vectors. Furthermore, we have addressed several uncertainties
about the security implications of commodity microarchitectures concerning several threat
models, including trust and isolation in the presence of system adversaries. Tran-
synther highlights the importance of automated vulnerability testing and analysis for
hardware and microarchitectural vulnerabilities. Although Transynther is an academic
prototype, it still proves to be a valuable tool for automated hardware testing. The newly
reported MDS vulnerability would not have gone unnoticed on Ice Lake if the hardware’s
earlier prototypes were tested using such tools. Furthermore, OEMs could have tested
these vulnerabilities before shipping consumer laptop with a vulnerable microcode update.
We have shown these vulnerabilities by devising new algorithmics attacks combined with
these leakages, introducing our findings under microarchitectural cryptanalysis.

Our work shows that software-based side-channel attacks are a practical threat to
complex computing systems, while our reports help future CPUs and cryptographic
software become more secure. As our findings suggest, these vulnerabilities affect several
different threat models, including network adversaries, local adversaries with the least

– 208 –

CHAPTER 7. REVISITING ISOLATED AND TRUSTED EXECUTION

privilege, and system adversaries attacking hardware-based trusted computing technologies.
Consequently, it is crucial for designers to understanding and treats these threat models
properly. An important key takes away from vulnerabilities like CopyCat, and TPM-
Fail is that sometimes these vulnerabilities occur because of porting a previous design to
a different threat model. In particular, Intel SGX relies on an ISA and a legacy architecture
not designed for the TEE model. Similarly, several of the cryptographic Implementations
used today in such trust models have been designed with a different threat model and a
much-limited understanding of potential attack vectors. However, there is no guarantee
that new designs with all these considerations would be immune to microarchitectural
attacks. That is why automated tools such Transynther and MicroWalk plays an
essential role in understanding the root cause and impact of these issues better, verifying
hardware mitigations, and automated testing of both the architecture and software.
Furthermore, these tools help us identify vulnerabilities at a larger scale, as our finding
suggests that manual effort to find these attack vectors does not scale to nonubiquitous
systems.

– 209 –

BIBLIOGRAPHY

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-Flow Integrity Principles,
Implementations, and Applications. ACM Transactions on Information and System Security
(TISSEC), 2009.

[2] Jeffery M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hinton, Kris G Konigsfeld, and
Paul D Madland. Method and Apparatus for Performing a Store Operation, April 2002. US Patent
6,378,062.

[3] Jeffrey M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hinton, Kris G Konigsfeld, Paul D
Madland, David B Papworth, and Michael A Fetterman. Method and Apparatus for Dispatching
and Executing a Load Operation to Memory, February 1998. US Patent 5,717,882.

[4] Can Acar, Arvind Krishnaswamy, and Robert Turner. Code pointer authentication for hardware
flow control, December 2016. US Patent 9,514,305.

[5] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New Results on Instruction Cache Attacks.
In International Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2010.

[6] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New Branch Prediction Vulnerabilities in
OpenSSL and Necessary Software Countermeasures. Cryptography and Coding, 2007.

[7] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the Power of Simple Branch Prediction
Analysis. In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2007.

[8] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting Secret Keys via Branch
Prediction. In Cryptographers’ Track at the RSA Conference, 2007.

[9] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J Alex
Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, et al. Imperfect
Forward Secrecy: How Diffie-Hellman Fails in Practice. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2015.

[10] Advanced Micro Devices. Software Optimization Guide for AMD Family 17h Processors. https:
//developer.amd.com/resources/developer-guides-manuals/, 2017.

[11] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/. Accessed: December 10, 2020.

[12] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. The EM side—channel
(s). In International Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2002.

– 210 –

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/
http://lcamtuf.coredump.cx/afl/

BIBLIOGRAPHY

[13] Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal, Jim Guilford, Erdinc
Ozturk, Gil Wolrich, and Ronen Zohar. Breakthrough AES Performance with Intel AES New
Instructions. White paper, June, 2010.

[14] Alejandro Cabrera Aldaya and Billy Bob Brumley. When one vulnerable primitive turns viral: Novel
single-trace attacks on ECDSA and RSA. In IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES), 2020.

[15] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García, and Nicola
Tuveri. Port Contention for Fun and Profit. In IEEE Symposium on Security and Privacy (S&P),
2019.

[16] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, and Billy Bob Brumley.
Cache-Timing Attacks on RSA Key Generation. In IACR Transactions on Cryptographic Hardware
and Embedded Systems (TCHES), 2019.

[17] Alejandro Cabrera Aldaya, Alejandro J Cabrera Sarmiento, and Santiago Sánchez-Solano. SPA
vulnerabilities of the binary extended Euclidean algorithm. Journal of Cryptographic Engineering,
2017.

[18] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and Yuval Yarom. Amplifying
Side Channels Through Performance Degradation. In Annual Computer Security Applications
Conference (ACSAC), 2016.

[19] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi.
Verifying Constant-Time Implementations. In USENIX Security Symposium, 2016.

[20] AMD. Speculation Behavior in AMD Micro-Architectures. https://www.amd.com/system/
files/documents/security-whitepaper.pdf, 2019.

[21] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and Hovav
Shacham. On Subnormal Floating Point and Abnormal Timing. In IEEE Symposium on Security
and Privacy (S&P), 2015.

[22] ARM. Security technology building a secure system using trustzone technology (white paper).
ARM Limited, 2009.

[23] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube,
Luke Valenta, David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney,
Susanne Engels, Christof Paar, and Yuval Shavitt. DROWN: Breaking TLS with SSLv2. In USENIX
Security Symposium, 2016.

[24] Zelalem Birhanu Aweke and Todd Austin. Øzone: Efficient Execution with Zero Timing Leakage
for Modern Microarchitectures. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2018.

[25] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das, Matthew Hicks,
Yossi Oren, and Todd Austin. ANVIL: Software-Based Protection Against Next-Generation
Rowhammer Attacks. ACM SIGPLAN Notices, 2016.

[26] Sundeep Bajikar. Trusted Platform Module (TPM) based Security on Notebook PCs - White
Paper. Mobile Platforms Group Intel Corporation, 2002.

– 211 –

https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf

BIBLIOGRAPHY

[27] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. In
Selected Areas in Cryptography, 2006.

[28] Erick Bauman and Zhiqiang Lin. A Case for Protecting Computer Games With SGX. In Proceedings
of the 1st Workshop on System Software for Trusted Execution, 2016.

[29] BearSSL. BearSSL Constant-Time Crypto. https://www.bearssl.org/constanttime.html.
Accessed: December 10, 2020.

[30] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. A Taint Based Approach for
Smart Fuzzing. In IEEE International Conference on Software Testing, Verification and Validation,
2012.

[31] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom. Ooh Aah... Just a Little Bit: A
small amount of side channel can go a long way. In International Conference on Cryptographic
Hardware and Embedded Systems (CHES), 2014.

[32] Daniel J Bernstein. Cache-timing attacks on AES. http://palms.ee.princeton.edu/system/
files/Cache-timing+attacks+on+AES.pdf, 2005.

[33] Daniel J Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink, Nadia Heninger,
Tanja Lange, Christine van Vredendaal, and Yuval Yarom. Sliding right into disaster: Left-to-right
sliding windows leak. In International Conference on Cryptographic Hardware and Embedded
Systems (CHES), 2017.

[34] Daniel J Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular inversion.
In IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2019.

[35] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-) security of 64-bit block ciphers:
Collision attacks on HTTP over TLS and OpenVPN. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

[36] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro Sorniotti, Babak
Falsafi, Mathias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting Speculative Execution
through Port Contention. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[37] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential Fault Attacks on Elliptic Curve
Cryptosystems. In Annual International Cryptology Conference, 2000.

[38] Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying Constant-Time Implementations by
Abstract Interpretation. Journal of Computer Security, 2019.

[39] Daniel Bleichenbacher. Experiments with DSA. CRYPTO 2005–Rump Session, 2005.

[40] Johannes Blömer and Alexander May. New Partial Key Exposure Attacks on RSA. In Annual
International Cryptology Conference, 2003.

[41] David G Boak. A History of US Communications Security (Volumes I and II). National Security
Agency, 1973.

[42] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d less than N/sup 0.292.
IEEE transactions on Information Theory, 2000.

– 212 –

https://www.bearssl.org/constanttime.html
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf

BIBLIOGRAPHY

[43] Dan Boneh, Glenn Durfee, and Yair Frankel. An Attack on RSA Given a Small Fraction of the
Private Key Bits. In International Conference on the Theory and Application of Cryptology and
Information Security, 1998.

[44] Dan Boneh, Shai Halevi, and Nick Howgrave-Graham. The Modular Inversion Hidden Number
Problem. In International Conference on the Theory and Application of Cryptology and Information
Security, 2001.

[45] Dan Boneh and Ramarathnam Venkatesan. Hardness of Computing the Most Significant Bits of
Secret Keys in Diffie-Hellman and Related Schemes. In Advances in Cryptology, 1996.

[46] Marcus Brandenburger and Christian Cachin. Challenges for Combining Smart Contracts with
Trusted Computing. In Proceedings of the 3rd Workshop on System Software for Trusted Execution,
2018.

[47] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari Kostiainen,
and Ahmad-Reza Sadeghi. DR.SGX: Automated and Adjustable Side-Channel Protection for
SGX using Data Location Randomization. In Annual Computer Security Applications Conference
(ACSAC), 2019.

[48] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.
CAn’t Touch This: Software-only Mitigation against Rowhammer Attacks targeting Kernel Memory.
In USENIX Security Symposium, 2017.

[49] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-
Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks Are Practical. In USENIX WOOT,
2017.

[50] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software Mitigations to hedge
AES against cache-based software side channel vulnerabilities. IACR Cryptology ePrint Archive,
2006.

[51] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert. Mitigating cache/timing based side-channels
in AES and RSA software implementations. In RSA Conference 2006 session DEV-203, 2006.

[52] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth. CacheShield: Detecting
Cache Attacks Through Self-Observation. In ACM Conference on Data and Application Security
and Privacy, 2018.

[53] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks are Still Practical. In IEEE European
Symposium on Security and Privacy (Euro S&P), 2011.

[54] David Brumley and Dan Boneh. Remote Timing Attacks Are Practical. In USENIX Security
Symposium, 2003.

[55] David Burns. Pre-Silicon Validation of Hyper-Threading Technology. Intel Technology Journal,
2002.

[56] Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano, Jan Tobias
Mühlberg, and Frank Piessens. Provably Secure Isolation for interruptible Enclaved Execution on
Small Microprocessors. In IEEE Computer Security Foundations Symposium (CSF), 2020.

– 213 –

BIBLIOGRAPHY

[57] John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog. BIOS Chronomancy:
Fixing the Core Root of Trust for Measurement. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2013.

[58] Alejandro Cabrera Aldaya, Raudel Cuiman Márquez, Alejandro J Cabrera Sarmiento, and Santiago
Sánchez-Solano. Side-channel analysis of the modular inversion step in the RSA key generation
algorithm. International Journal of Circuit Theory and Applications, 2017.

[59] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R Engler. EXE:
Automatically Generating Inputs of Death. ACM Transactions on Information and System Security
(TISSEC), 2008.

[60] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million Facebook profiles harvested
for Cambridge Analytica in major data breach. The guardian, 2018.

[61] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin, Daniel
Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, and et al. Fallout: Leaking Data on
Meltdown-Resistant CPUs. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019.

[62] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner,
Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In USENIX Security Symposium, 2019.

[63] Adrian L Carbine, Gary L Brown, and Donald D Parker. Decoder for decoding multiple instructions
in parallel, May 1997. US Patent 5,630,083.

[64] George J Carrette. CRASHME: Random input testing, 1996.

[65] Chandler Carruth. Rfc: Speculative load hardening (a spectre variant1 mitigation). https:
//lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html, 2018.

[66] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M Tullsen, Deian Stefan, Tamara
Rezk, and Gilles Barthe. Constant-Time Foundations for the New Spectre Era. In Programming
Language Design and Implementation (PLDI), 2020.

[67] David Challener. Trusted Platform Module. In Encyclopedia of Cryptography and Security, 2011.

[68] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SgxPectre: Stealing Intel Secrets
from SGX Enclaves Via Speculative Execution. In IEEE European Symposium on Security and
Privacy (Euro S&P), 2019.

[69] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang, XiaoFeng Wang,
Ten-Hwang Lai, and Dongdai Lin. Racing in Hyperspace: Closing Hyper-Threading Side Channels
on SGX with Contrived Data Races. In IEEE Symposium on Security and Privacy (S&P), 2018.

[70] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M Frans Kaashoek.
Linux kernel vulnerabilities: State-of-the-art defenses and open problems. In Proceedings of the
Second Asia-Pacific Workshop on Systems, 2011.

[71] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. Report on Post-quantum Cryptography. US Department of Commerce,
National Institute of Standards and Technology, 2016.

– 214 –

https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html

BIBLIOGRAPHY

[72] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. Detecting Privileged
Side-Channel Attacks in Shielded Execution with DéJà Vu. In Asia Conference on Computer and
Communications Security (AsiaCCS), 2017.

[73] Brian Chess and Gary McGraw. Static Analysis for Security. In IEEE Symposium on Security and
Privacy (S&P), 2004.

[74] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of cache-based side-channel
attacks using hardware performance counters. Applied Soft Computing, 2016.

[75] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Exploiting Correcting Codes:
On the Effectiveness of ECC Memory Against Rowhammer Attacks. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[76] Don Coppersmith. Small solutions to polynomial equations, and low exponent rsa vulnerabilities.
Journal of Cryptology, 1997.

[77] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier. Universal Padding Schemes
for RSA. In Annual International Cryptology Conference, 2002.

[78] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum: Minimal Hardware Extensions for
Strong Software Isolation. In USENIX Security Symposium, 2016.

[79] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade. In Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00, 2000.

[80] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. A
comprehensive symbolic analysis of TLS 1.3. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017.

[81] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer Science & Business Media, 2013.

[82] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad
Moghimi, and Yuval Yarom. CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID
via Cache Attacks. In IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2018.

[83] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson. Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA: extended version.
Journal of Cryptographic Engineering, 2014.

[84] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. Side-channel vul-
nerability factor: A metric for measuring information leakage. In International Symposium on
Computer Architecture (ISCA), 2012.

[85] Bert den Boer, Kerstin Lemke, and Guntram Wicke. A DPA attack against the modular reduction
within a CRT implementation of RSA. In International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), 2002.

[86] Dorothy E Denning. An Intrusion-Detection Model. IEEE Transactions on software engineering,
1987.

– 215 –

BIBLIOGRAPHY

[87] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. HybCache: Hybrid Side-Channel-
Resilient Caches for Trusted Execution Environments. In USENIX Security Symposium, 2020.

[88] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol version 1.2. 2008.

[89] Whitfield Diffie and George Ledin. SMS4 Encryption Algorithm for Wireless Networks. IACR
Cryptology ePrint Archive, 2008.

[90] Pei Dingyi, Salomaa Arto, and Ding Cunsheng. Chinese Remainder Theorem: Applications In
Computing, Coding, Cryptography. World Scientific, 1996.

[91] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. Prime+Abort: A Timer-Free
High-Precision L3 Cache Attack using Intel TSX. In USENIX Security Symposium, 2017.

[92] Jack Doweck. Inside Intel R© Core Microarchitecture. In IEEE Hot Chips 18 Symposium (HCS),
2006.

[93] Goran Doychev and Boris Köpf. Rigorous analysis of software countermeasures against cache
attacks. In Programming Language Design and Implementation (PLDI), 2017.

[94] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer,
Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al. The Matter of Heartbleed. In
Proceedings of conference on internet measurement conference, 2014.

[95] Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-output functions.
Technical report, 2015.

[96] Donald Eastlake and Paul Jones. US secure hash algorithm 1 (SHA1), 2001.

[97] EMVCo. EMVCo overview. https://www.emvco.com/about/overview/. Accessed: December
10, 2020.

[98] EMVCo. Integrated Circuit Card Specifications for Payment Systems – Book 2: Security and Key
Management, Version 4.3, 2011.

[99] Mark Ermolov and Maxim Goryachy. How to hack a turned-off computer, or running unsigned
code in intel management engine. Black Hat Europe, 2017.

[100] Mark Ermolov and Maxim Goryachy. Where There’s a JTAG, There’s a way: Obtaining full system
access via USB. White Paper, 2017. Accessed: December 10, 2020.

[101] Mark Ermolov and Maxim Goryachy. Intel VISA: Through the Rabbit Hole. Black Hat Asia, 2019.

[102] Matthias Ernst, Ellen Jochemsz, Alexander May, and Benne De Weger. Partial Key Exposure
Attacks on RSA Up to Full Size Exponents. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, 2005.

[103] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over ASLR: Attacking
Branch Predictors to Bypass ASLR. In IEEE/ACM International Symposium on Microarchitecture,
2016.

[104] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Ponomarev. Branch-
Scope: A New Side-Channel Attack on Directional Branch Predictor. In ACM SIGPLAN Notices,
2018.

– 216 –

https://www.emvco.com/about/overview/

BIBLIOGRAPHY

[105] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL Implementation of ECDSA
with a Few Signatures. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016.

[106] N. J. Al Fardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS and DTLS Record
Protocols. In IEEE Symposium on Security and Privacy (S&P), 2013.

[107] Agner Fog. The microarchitecture of intel, amd and via cpus: An optimization guide for assembly
programmers and compiler makers. Copenhagen University College of Engineering, 2012.

[108] Stephanie Forrest, Anil Somayaji, and David H Ackley. Building Diverse Computer Systems. In
Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat. No. 97TB100133),
1997.

[109] Fortanix. Self-Defending Key Management Service with Intel R© Software Guard Exten-
sions. https://www.fortanix.com/assets/SGXwhitepaper/Fortanix_SDKMS_with_Intel_
SGX_Whitepaper.pdf. Accessed: December 10, 2020.

[110] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU. In IEEE Symposium on Security and Privacy (S&P),
2018.

[111] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Trrespass: Exploiting the many sides of target row
refresh. In IEEE Symposium on Security and Privacy (S&P), 2020.

[112] Patrick Gallagher. Digital Signature Standard (DSS). Federal Information Processing Standards
Publications, volume FIPS, 2013.

[113] Cesar Pereida García and Billy Bob Brumley. Constant-Time Callees with Variable-Time Callers.
In USENIX Security Symposium, 2017.

[114] Amaury Gauthier, Clément Mazin, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Enhancing fuzzing
technique for OKL4 syscalls testing. In International Conference on Availability, Reliability and
Security (ARES), 2011.

[115] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. Journal of Cryptographic Engineering,
2018.

[116] Qian Ge, Yuval Yarom, Frank Li, and Gernot Heiser. Contemporary Processors Are Leaky–and
There’s Nothing You Can Do About It. The Computing Research Repository. arXiv, 2016.

[117] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-by Key-Extraction Cache
Attacks from Portable Code. In International Conference on Applied Cryptography and Network
Security, 2018.

[118] Craig Gentry and Shai Halevi. Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In
Annual international conference on the theory and applications of cryptographic techniques, 2011.

[119] Github. CPUMicrocodes: Intel, AMD, VIA & Freescale CPU Microcode Repositories. https:
//github.com/platomav/CPUMicrocodes, May 2020.

– 217 –

https://www.fortanix.com/assets/SGXwhitepaper/Fortanix_SDKMS_with_Intel_SGX_Whitepaper.pdf
https://www.fortanix.com/assets/SGXwhitepaper/Fortanix_SDKMS_with_Intel_SGX_Whitepaper.pdf
https://github.com/platomav/CPUMicrocodes
https://github.com/platomav/CPUMicrocodes

BIBLIOGRAPHY

[120] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schueth, and François-Xavier Standaert.
Simpler and More Efficient Rank Estimation for Side-Channel Security Assessment. In International
Workshop on Fast Software Encryption, 2015.

[121] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated Whitebox Fuzz Testing. In
Network and Distributed Systems Security (NDSS) Symposium, 2008.

[122] Google. Shielded VM. https://cloud.google.com/security/shielded-cloud/shielded-
vm#vtpm, 2019. Accessed: December 10, 2020.

[123] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation Leak-aside Buffer:
Defeating Cache Side-channel Protections with TLB Attacks. In USENIX Security Symposium,
2018.

[124] Seena Gressin. The equifax data breach: What to do. Federal Trade Commission, 2017.

[125] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli O’Connell,
Wolfgang Schoechl, and Yuval Yarom. Another Flip in the Wall of Rowhammer Defenses. In IEEE
Symposium on Security and Privacy (S&P), 2018.

[126] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard. Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016.

[127] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript. In Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2016.

[128] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+Flush: A Fast and
Stealthy Cache Attack. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2016.

[129] Daniel Gruss, Felix Schuster, Olya Ohrimenko, Istvan Haller, Julian Lettner, and Manuel Costa.
Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory. In
USENIX Security Symposium, 2017.

[130] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template Attacks: Automating
Attacks on Inclusive Last-Level Caches. In USENIX Security Symposium, 2015.

[131] S. Gueron and V. Krasnov. SM4 acceleration processors, methods, systems, and instructions,
December 2016. US Patent 9,513,913.

[132] Shay Gueron. Memory Encryption for General-Purpose Processors. In IEEE Symposium on Security
and Privacy (S&P), 2016.

[133] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games – Bringing Access-Based
Cache Attacks on AES to Practice. In IEEE Symposium on Security and Privacy (S&P), 2011.

[134] Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. Cache-Based Application Detection in the
Cloud Using Machine Learning. In Asia Conference on Computer and Communications Security
(AsiaCCS), 2017.

– 218 –

https://cloud.google.com/security/shielded-cloud/shielded-vm#vtpm
https://cloud.google.com/security/shielded-cloud/shielded-vm#vtpm

BIBLIOGRAPHY

[135] Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. FortuneTeller: Predicting
Microarchitectural Attacks via Unsupervised Deep Learning. arXiv preprint arXiv:1907.03651, 2019.

[136] Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar. PerfWeb: How to Violate
Web Privacy with Hardware Performance Events. In Computer Security – ESORICS 2017, 2017.

[137] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the Linux random number
generator. In IEEE Symposium on Security and Privacy (S&P), 2006.

[138] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx. Off-Limits: Abusing Legacy x86
Memory Segmentation to Spy on Enclaved Execution. In International Symposium on Engineering
Secure Software and Systems, 2018.

[139] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan Gohman,
Luke Wagner, Alon Zakai, and JF Bastien. Bringing the Web up to Speed with WebAssembly. In
Programming Language Design and Implementation (PLDI), 2017.

[140] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-Resolution Side Channels for Untrusted
Operating Systems. In USENIX Annual Technical Conference (ATC), 2017.

[141] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. A Classification of SQL Injection
Attacks and Countermeasures. In Proceedings of the IEEE international symposium on secure
software engineering, 2006.

[142] Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim. A Bad Dream: Subverting
Trusted Platform Module While You Are Sleeping. In 27th USENIX Security Symposium (USENIX
Security 18), August 2018.

[143] Darrel Hankerson, Julio López Hernandez, and Alfred Menezes. Software implementation of elliptic
curve cryptography over binary fields. In International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), 2000.

[144] Dan Harkins, Dave Carrel, et al. The Internet Key Exchange (IKE). Technical report, RFC 2409,
november, 1998.

[145] Nadia Heninger and Hovav Shacham. Reconstructing RSA Private Keys from Random Key Bits.
In Annual International Cryptology Conference, 2009.

[146] Sebastien Hily, Zhongying Zhang, and Per Hammarlund. Resolving false dependencies of speculative
load instructions, October 2009. US Patent 7,603,527.

[147] Martin Hlaváč and Tomáš Rosa. Extended Hidden Number Problem and Its Cryptanalytic
Applications. In Selected Areas in Cryptography, 2007.

[148] Jann Horn. speculative execution, variant 4: speculative store bypass. https://bugs.chromium.
org/p/project-zero/issues/detail?id=1528, 2018.

[149] Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, and Andrew Paverd. Mitigating Branch-
Shadowing Attacks on Intel SGX using Control Flow Randomization. In Proceedings of the 3rd
Workshop on System Software for Trusted Execution, 2018.

[150] George Hotz. Console hacking 2010-ps3 epic fail. In 27th Chaos Communications Congress, 2010.

– 219 –

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

BIBLIOGRAPHY

[151] Nick A Howgrave-Graham and Nigel P. Smart. Lattice Attacks on Digital Signature Schemes.
Designs, Codes and Cryptography, 23(3), 2001.

[152] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing Side Channel Attacks against
Kernel Space ASLR. In IEEE Symposium on Security and Privacy (S&P), 2013.

[153] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai, and Mingshu Li.
Bluethunder: A 2-level Directional Predictor Based Side-Channel Attack against SGX. In IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2020.

[154] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk
Sunar. Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. IACR
Cryptology ePrint Archive, 2015.

[155] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cache
Attacks Enable Bulk Key Recovery on the Cloud. In International Conference on Cryptographic
Hardware and Embedded Systems (CHES), 2016.

[156] Intel. Affected Processors: Transient Execution Attacks & Related Security Is-
sues by CPU. https://software.intel.com/security-software-guidance/processors-
affected-transient-execution-attack-mitigation-product-cpu-model. Accessed: De-
cember 10, 2020.

[157] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sampling. https://www.epanorama.
net/blog/2019/05/17/deep-dive-intel-analysis-of-microarchitectural-data-
sampling/. Accessed: June 21, 2020.

[158] Intel. Intel IPP Crypto Library (commit ad2ad95). https://github.com/intel/ipp-crypto.

[159] Intel. Intel IPP linkage models - quick reference guide. https://software.intel.com/
content/www/us/en/develop/articles/intel-integrated-performance-primitives-
intel-ipp-intel-ipp-linkage-models-quick-reference-guide.html. Accessed: De-
cember 10, 2020.

[160] Intel. Intel Lehmer’c GCD Implementation sources/ippcp/pcpbnarithgcd.c. https://github.
com/intel/ipp-crypto/blob/b6848dc/sources/ippcp/pcpbnarithgcd.c#L54. Accessed:
December 10, 2020.

[161] Intel. Intel SGX SSL. https://github.com/intel/intel-sgx-ssl. Accessed: December 10,
2020.

[162] Intel. Intel(R) Software Guard Extensions for Linux* OS. https://github.com/01org/linux-
sgx. Accessed: December 10, 2020.

[163] Intel. Intel R© 64 and IA-32 Architectures Optimization Reference Manual. https://
software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-
optimization-manual.pdf. Accessed: December 10, 2020.

[164] Intel. Intel R© 64 and IA-32 Architectures Software Developer Manuals. https://software.
intel.com/en-us/articles/intel-sdm. Accessed: December 10, 2020.

– 220 –

https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://www.epanorama.net/blog/2019/05/17/deep-dive-intel-analysis-of-microarchitectural-data-sampling/
https://www.epanorama.net/blog/2019/05/17/deep-dive-intel-analysis-of-microarchitectural-data-sampling/
https://www.epanorama.net/blog/2019/05/17/deep-dive-intel-analysis-of-microarchitectural-data-sampling/
https://github.com/intel/ipp-crypto
https://software.intel.com/content/www/us/en/develop/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-linkage-models-quick-reference-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-linkage-models-quick-reference-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-linkage-models-quick-reference-guide.html
https://github.com/intel/ipp-crypto/blob/b6848dc/sources/ippcp/pcpbnarithgcd.c#L54
https://github.com/intel/ipp-crypto/blob/b6848dc/sources/ippcp/pcpbnarithgcd.c#L54
https://github.com/intel/intel-sgx-ssl
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

BIBLIOGRAPHY

[165] Intel. Microarchitectural Data Sampling Advisory (INTEL-SA-00233). https://www.intel.com/
content/www/us/en/security-center/advisory/intel-sa-00233.html. Accessed: July
14, 2020.

[166] Intel. Pin, Dynamic Binary Instrumentation Tool. https://software.intel.com/en-us/
articles/pin-a-dynamic-binary-instrumentation-tool. Accessed: December 10, 2020.

[167] Intel. Processors Affected by Microarchitectural Data Sampling. https://web.archive.org/
web/20200621020512/https://software.intel.com/security-software-guidance/api-
app/insights/processors-affected-microarchitectural-data-sampling. Accessed:
June 21, 2020.

[168] Intel. Processors Affected: Load Value Injection. https://web.archive.org/
web/20200519114503/https://software.intel.com/security-software-guidance/
insights/processors-affected-load-value-injection. Accessed: May 19, 2020.

[169] Intel. Side Channel Mitigation by Product CPU Model. https://web.archive.org/
web/20200523134452/https://www.intel.com/content/www/us/en/architecture-and-
technology/engineering-new-protections-into-hardware.html. Accessed: May 23,
2020.

[170] Intel. Understanding CPU Dispatching in the Intel R© IPP Libraries. https:
//software.intel.com/content/www/us/en/develop/articles/understanding-cpu-
optimized-code-used-in-intel-ipp.html. Accessed: December 10, 2020.

[171] Intel. Write Combining Memory Implementation Guidelines. https://download.intel.com/
design/PentiumII/applnots/24442201.pdf, 1998.

[172] Intel. Intel 64 Architecture Memory Ordering White Paper. http://www.cs.cmu.edu/~410-
f10/doc/Intel_Reordering_318147.pdf, 2008. Accessed: December 10, 2020.

[173] Intel. Copying Accelerated Video Decode Frame Buffers. https://software.intel.com/
content/www/us/en/develop/articles/copying-accelerated-video-decode-frame-
buffers.html, 2015.

[174] Intel. Intel Software Guard Extensions Developer Guide. https://software.intel.com/
content/www/us/en/develop/documentation/sgx-developer-guide/top.html, 2017.

[175] Intel. Deep Dive: Intel Transactional Synchronization Extensions (Intel TSX) Asynchronous Abort.
https://software.intel.com/security-software-guidance/insights/deep-dive-
intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort,
2019.

[176] Intel. Developer Reference for Intel Integrated Performance Primitives Cryptography. https:
//software.intel.com/en-us/ipp-crypto-reference, 2019. Accessed: December 10, 2020.

[177] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3 (3A, 3B & 3C):
System Programming Guide, 2019.

[178] Intel. Intel Quark Microcontrollers. https://www.intel.com/content/www/us/en/embedded/
products/quark/overview.html, 2019. Accessed: December 10, 2020.

– 221 –

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://web.archive.org/web/20200621020512/https://software.intel.com/security-software-guidance/api-app/insights/processors-affected-microarchitectural-data-sampling
https://web.archive.org/web/20200621020512/https://software.intel.com/security-software-guidance/api-app/insights/processors-affected-microarchitectural-data-sampling
https://web.archive.org/web/20200621020512/https://software.intel.com/security-software-guidance/api-app/insights/processors-affected-microarchitectural-data-sampling
https://web.archive.org/web/20200519114503/https://software.intel.com/security-software-guidance/insights/processors-affected-load-value-injection
https://web.archive.org/web/20200519114503/https://software.intel.com/security-software-guidance/insights/processors-affected-load-value-injection
https://web.archive.org/web/20200519114503/https://software.intel.com/security-software-guidance/insights/processors-affected-load-value-injection
https://web.archive.org/web/20200523134452/https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://web.archive.org/web/20200523134452/https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://web.archive.org/web/20200523134452/https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://software.intel.com/content/www/us/en/develop/articles/understanding-cpu-optimized-code-used-in-intel-ipp.html
https://software.intel.com/content/www/us/en/develop/articles/understanding-cpu-optimized-code-used-in-intel-ipp.html
https://software.intel.com/content/www/us/en/develop/articles/understanding-cpu-optimized-code-used-in-intel-ipp.html
https://download.intel.com/design/PentiumII/applnots/24442201.pdf
https://download.intel.com/design/PentiumII/applnots/24442201.pdf
http://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf
http://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf
https://software.intel.com/content/www/us/en/develop/articles/copying-accelerated-video-decode-frame-buffers.html
https://software.intel.com/content/www/us/en/develop/articles/copying-accelerated-video-decode-frame-buffers.html
https://software.intel.com/content/www/us/en/develop/articles/copying-accelerated-video-decode-frame-buffers.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/en-us/ipp-crypto-reference
https://software.intel.com/en-us/ipp-crypto-reference
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html

BIBLIOGRAPHY

[179] Intel. 10th Generation Intel Core Processor Families Specification Update. https://intel.ly/
31x6BcJ, May 2020.

[180] Intel. Guidelines for Mitigating Timing Side Channels Against Cryptographic Imple-
mentations. https://software.intel.com/security-software-guidance/secure-
coding/guidelines-mitigating-timing-side-channels-against-cryptographic-
implementations, 2020.

[181] Gorka Irazoqui, Kai Cong, Xiaofei Guo, Hareesh Khattri, Arun Kanuparthi, Thomas Eisenbarth,
and Berk Sunar. Did we learn from LLC Side Channel Attacks? A Cache Leakage Detection Tool
for Crypto Libraries. arXiv preprint arXiv:1709.01552, 2017.

[182] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S $ A: A Shared Cache Attack That Works
across Cores and Defies VM Sandboxing–and Its Application to AES. In IEEE Symposium on
Security and Privacy (S&P), 2015.

[183] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic Reverse Engineering of Cache
Slice Selection in Intel Processors. In Euromicro Conference on Digital System Design (DSD),
2015.

[184] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor Cache Attacks. In Asia
Conference on Computer and Communications Security (AsiaCCS), 2016.

[185] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT: Stopping Microarchitectural
Attacks Before Execution. IACR Cryptology ePrint Archive, 2016.

[186] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Wait a minute! A fast,
Cross-VM attack on AES. In International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2014.

[187] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu, Thomas Eisenbarth,
and Berk Sunar. SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks. In
USENIX Security Symposium, 2019.

[188] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel Address Space Layout Randomization
with Intel TSX. In ACM SIGSAC Conference on Computer and Communications Security (CCS),
2016.

[189] Gabriel Campana Jean-Baptiste Bedrune. Everybody be Cool, This is a Robbery! Black Hat USA,
2019.

[190] Moritz Jodeit and Martin Johns. USB Device Drivers: A Stepping Stone into Your Kernel. In
IEEE European Conference on Computer Network Defense, 2010.

[191] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic Curve Digital Signature Algorithm
(ECDSA). International Journal of Information Security, 2001.

[192] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. Intel Software
Guard Extensions: EPID Provisioning and Attestation Services. White Paper, 2016.

[193] Dave Jones. Trinity: A system call fuzzer. In Ottawa Linux Symposium, 2011.

– 222 –

https://intel.ly/31x6BcJ
https://intel.ly/31x6BcJ
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations

BIBLIOGRAPHY

[194] Ramesh Karri, Jeyavijayan Rajendran, Kurt Rosenfeld, and Mohammad Tehranipoor. Trustworthy
Hardware: Identifying and Classifying Hardware Trojans. Computer, 2010.

[195] Timo Kasper, David Oswald, and Christof Paar. EM Side-Channel Attacks on Commercial
Contactless Smartcards Using Low-Cost Equipment. In International Workshop on Information
Security Applications, 2009.

[196] Bernhard Kauer. OSLO: Improving the Security of Trusted Computing. In USENIX Security
Symposium, 2007.

[197] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Villegas. When Constant-Time
Source Yields Variable-Time Binary: Exploiting Curve25519-donna Built with MSVC 2015. In
Cryptology and Network Security, 2016.

[198] Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfeden, Jesse Elwell, Nael Abu-Ghazaleh,
Dmitry Ponomarev, and Aamer Jaleel. RIC: Relaxed Inclusion Caches for Mitigating LLC Side-
Channel Attacks. In Design Automation Conference (DAC), 2017.

[199] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. ret2dir: Rethinking Kernel
Isolation. In USENIX Security Symposium, 2014.

[200] Deokjin Kim, Daehee Jang, Minjoon Park, Yunjong Jeong, Jonghwan Kim, Seokjin Choi, and
Brent Byunghoon Kang. SGX-LEGO: Fine-grained SGX controlled-channel attack and its counter-
measure. computers & security, 2019.

[201] Jeremie S Kim, Minesh Patel, A Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and
Onur Mutlu. Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and
Mitigation Techniques. arXiv preprint arXiv:2005.13121, 2020.

[202] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In ACM SIGARCH Computer Architecture News, 2014.

[203] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Overflows: Attacks and Defenses.
arXiv:1807.03757, 2018.

[204] Steve Klabnik and Carol Nichols. The Rust Programming Language (Covers Rust 2018). No
Starch Press, 2019.

[205] Donald E Knuth. Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-
Wesley Professional, 2014.

[206] Cetin K Koç. Analysis of Sliding Window Techniques for Exponentiation. Computers & Mathematics
with Applications, 1995.

[207] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In IEEE Symposium on Security and Privacy (S&P),
2019.

[208] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to Differential Power
Analysis. Journal of Cryptographic Engineering, 2011.

– 223 –

BIBLIOGRAPHY

[209] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In Advances in Cryptology, 1996.

[210] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and Ted Marz. Comparing
operating systems using robustness benchmarks. In IEEE Symposium on Reliable Distributed
Systems (SRDS), 1997.

[211] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh.
Spectre Returns! Speculation Attacks using the Return Stack Buffer. In USENIX WOOT, 2018.

[212] Steffen Kosinski, Fernando Latorre, Niranjan Cooray, Stanislav Shwartsman, Ethan Kalifon, Varun
Mohandru, Pedro Lopez, Tom Aviram-Rosenfeld, Jaroslav Topp, Li-Gao Zei, et al. Store forwarding
for data caches, November 2016. US Patent 9,507,725.

[213] Evgeni Krimer, Guillermo Savransky, Idan Mondjak, and Jacob Doweck. Counter-based memory
disambiguation techniques for selectively predicting load/store conflicts, October 2013. US Patent
8,549,263.

[214] Klaus Kursawe, Dries Schellekens, and Bart Preneel. Analyzing trusted platform communication.
In In: ECRYPT Workshop, CRASH – CRyptographic Advances in Secure Hardware, 2005.

[215] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
NetCAT: Practical Cache Attacks from the Network. In IEEE Symposium on Security and Privacy
(S&P), 2020.

[216] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed: Reading bits in
memory without accessing them. In IEEE Symposium on Security and Privacy (S&P), 2020.

[217] Christoph Lambert, Maria Fernandes, Jérémie Decouchant, and Paulo Esteves-Verissimo. MaskAl:
Privacy preserving masked reads alignment using intel SGX. In IEEE Symposium on Reliable
Distributed Systems (SRDS), 2018.

[218] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing. In USENIX
Security Symposium, 2017.

[219] Oded Lempel. System for speculative branch target prediction having a dynamic prediction history
buffer and a static prediction history buffer, November 1999. US Patent 5,978,909.

[220] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring Polynomials with Rational Coefficients.
MATH. ANN, 261:515–534, 1982.

[221] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ekberg, and N Asokan.
Pac it up: Towards pointer integrity using arm pointer authentication. In USENIX Security
Symposium, 2019.

[222] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice, and Stefan
Mangard. Practical Keystroke Timing Attacks in Sandboxed JavaScript. In Computer Security –
ESORICS 2017, 2017.

[223] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard. AR-
Mageddon: Cache Attacks on Mobile Devices. In USENIX Security Symposium, 2016.

– 224 –

BIBLIOGRAPHY

[224] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown:
Reading Kernel Memory from User Space. In USENIX Security Symposium, 2018.

[225] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and Ruby B
Lee. CATalyst: Defeating Last-Level Cache Side Channel Attacks in Cloud Computing. In IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2016.

[226] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level Cache Side-Channel
Attacks Are Practical. In IEEE Symposium on Security and Privacy (S&P), 2015.

[227] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution Using Return Stack Buffers. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2018.

[228] Stefan Mangard. A simple power-analysis (SPA) attack on implementations of the AES key
expansion. In International Conference on Information Security and Cryptology, 2002.

[229] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards, volume 31. Springer Science & Business Media, 2008.

[230] Debbie Marr, Frank Binns, D Hill, Glenn Hinton, D Koufaty, et al. Hyper-threading technology in
the netburst R© microarchitecture. Hot Chips, 2002.

[231] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi. Testing system
virtual machines. In 19th International Symposium on Software Testing and Analysis, 2010.

[232] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi. Testing CPU
emulators. In Symposium on Software Testing and Analysis, 2009.

[233] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss, Carlo Al-
berto Boano, Stefan Mangard, and Kay Römer. Hello from the Other Side: SSH over Robust
Cache Covert Channels in the Cloud. In Network and Distributed Systems Security (NDSS)
Symposium, 2017.

[234] Alexander May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD Dissertation,
2003.

[235] Manuel Mendonça and Nuno Neves. Fuzzing Wi-Fi Drivers to Locate Security Vulnerabilities. In
IEEE European Dependable Dependable Computing Conference (EDCC), 2008.

[236] Thomas S. Messerges, Ezzat A. Dabbish, and Robert H. Sloan. Examining Smart-Card Security
Under the Threat of Power Analysis Attacks. IEEE Trans. Comput., May 2002.

[237] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian Schinzel, and Erik
Tews. Revisiting SSL/TLS Implementations: New Bleichenbacher Side Channels and Attacks. In
USENIX Security Symposium, 2014.

[238] Microsoft. How Windows 10 uses the Trusted Platform Module. https://docs.microsoft.com/
en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm,
2019. Accessed: December 10, 2020.

[239] Microsoft. Support for generation 2 VMs (preview) on Azure. https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/generation-2, 2019. Accessed: December 10, 2020.

– 225 –

https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2

BIBLIOGRAPHY

[240] Microsoft. Azure confidential computing. https://azure.microsoft.com/en-us/solutions/
confidential-compute/, 2020. Accessed: December 10, 2020.

[241] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck, Daniel Genkin,
Daniel Gruss, Frank Piessens, Berk Sunar, and Yuval Yarom. Fallout: Reading Kernel Writes From
User Space. arXiv:1905.12701, 2019.

[242] Chris Mitchell. Trusted computing, volume 6. Iet, 2005.

[243] Ahmad Moghimi. Side-Channel Attacks on Intel SGX: How SGX Amplifies The Power of Cache
Attack. MS Thesis, 2017.

[244] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam: A False Dependency Attack
Against Constant-Time Crypto Implementations in SGX. In Cryptographers’ Track at the RSA
Conference, 2018.

[245] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX Amplifies the
Power of Cache Attacks. In International Conference on Cryptographic Hardware and Embedded
Systems (CHES), 2017.

[246] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. MemJam: A False
Dependency Attack Against Constant-Time Crypto Implementations. International Journal of
Parallel Programming, 2019.

[247] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. Medusa: Microarchitectural
Data Leakage via Automated Attack Synthesis. In USENIX Security Symposium, 2020.

[248] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-FAIL: TPM meets
Timing and Lattice Attacks. In USENIX Security Symposium, 2020.

[249] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. CopyCat:
Controlled Instruction-Level Attacks on Enclaves. In USENIX Security Symposium, 2020.

[250] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE Bites: Exploiting the SSL 3.0
Fallback. Security Advisory, 2014.

[251] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens.
Plundervolt: Software-based Fault Injection Attacks against Intel SGX. In IEEE Symposium on
Security and Privacy (S&P), 2020.

[252] San Murugesan. Understanding Web 2.0. IT professional, 2007.

[253] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham Chaudhry, Muneeb Yousaf,
Umer Farooq, Vianney Lapotre, and Guy Gogniat. Machine Learning For Security: The Case of
Side-Channel Attack Detection at Run-time. In IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2018.

[254] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Retrofitting Fine Grain Isolation in the Firefox Renderer. In USENIX
Security Symposium, 2020.

[255] National Institute of Standards and Technology. Federal Information Processing Standards (FIPS)
Publication 46-3 – Data Encryption Standard (DES). https://csrc.nist.gov/csrc/media/
publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf, 1999.

– 226 –

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf

BIBLIOGRAPHY

[256] National Institute of Standards and Technology. Update to Current Use and Deprecation of
TDEA. https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-
of-TDEA, 2017.

[257] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas. The Return of
Coppersmith’s Attack: Practical Factorization of Widely Used RSA Moduli. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017.

[258] James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis for Automatic Detection,
Analysis, and SignatureGeneration of Exploits on Commodity Software. In Network and Distributed
Systems Security (NDSS) Symposium, 2005.

[259] Nguyen and Shparlinski. The Insecurity of the Digital Signature Algorithm with Partially Known
Nonces. Journal of Cryptology, 2002.

[260] Phong Q Nguyen and Igor E Shparlinski. The Insecurity of the Elliptic Curve Digital Signature
Algorithm with Partially Known Nonces. Designs, codes and cryptography, 2003.

[261] Phong Q. Nguyen and Damien Stehlé. LLL on the Average. In Algorithmic Number Theory, 2006.

[262] Phuong Ha Nguyen, Chester Rebeiro, Debdeep Mukhopadhyay, and Huaxiong Wang. Improved
differential cache attacks on SMS4. In International Conference on Information Security and
Cryptology, 2012.

[263] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. SpecFuzz: Bringing
Spectre-type Vulnerabilities to the Surface. In USENIX Security Symposium, 2019.

[264] openssl.com. OpenSSL Cryptography and SSL/TLS Toolkit). https://www.openssl.org/,
2020.

[265] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis. The spy
in the sandbox: Practical cache attacks in javascript and their implications. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2015.

[266] Meni Orenbach, Andrew Baumann, and Mark Silberstein. Autarky: Closing Controlled Channels
with Self-Paging Enclaves. In EuroSys, 2020.

[267] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermeasures: The Case
of AES. In Cryptographers’ Track at the RSA Conference, 2006.

[268] D Page. Defending against cache-based side-channel attacks. Information Security Technical
Report, 2003.

[269] Colin Percival. Cache missing for fun and profit, 2005.

[270] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make Sure DSA Signing Exponentiations
Really Are Constant-Time. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016.

[271] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. vTPM: Virtualizing the Trusted Platform
Module. In USENIX Security Symposium, 2006.

– 227 –

https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
https://www.openssl.org/

BIBLIOGRAPHY

[272] Diego Perez-Botero, Jakub Szefer, and Ruby B Lee. Characterizing Hypervisor Vulnerabilities in
Cloud Computing Servers. In Proceedings of international workshop on Security in cloud computing,
2013.

[273] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard. DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX Security Symposium, 2016.

[274] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and Raluca Ada Popa.
Visor: Privacy-Preserving Video Analytics as a Cloud Service. In USENIX Security Symposium,
2020.

[275] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Measures and
Counter-measures for Smart Cards. In Smart Card Programming and Security, 2001.

[276] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul England, Chris
Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon, Magnus Nystrom, David Robinson,
Rob Spiger, Stefan Thom, and David Wooten. fTPM: A Software-Only Implementation of a TPM
Chip. In USENIX Security Symposium, 2016.

[277] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing Digital Side-Channels through
Obfuscated Execution. In USENIX Security Symposium, 2015.

[278] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure, Precise, and Fast Floating-Point Operations
on x86 Processors. In USENIX Security Symposium, 2016.

[279] Eric Rescorla and Tim Dierks. The transport layer security (TLS) protocol version 1.3. RFC 8446,
DOI 10.17487/RFC8446, August 2018, 2018.

[280] Eric Rescorla et al. Diffie-Hellman Key Agreement Method. Technical report, RFC 2631, June,
1999.

[281] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2009.

[282] Matthieu Rivain. Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves. IACR
Cryptology ePrint Archive, 2011.

[283] Ronald Rivest and S Dusse. The MD5 message-digest algorithm, 1992.

[284] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 1978.

[285] Tanja Römer and Jean-Pierre Seifert. Information leakage attacks against smart card implementa-
tions of the elliptic curve digital signature algorithm. In International Conference on Research in
Smart Cards, 2001.

[286] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong, and Yuval Yarom. The 9
Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations. In IEEE Symposium
on Security and Privacy, 2019.

[287] Keegan Ryan. Hardware-Backed Heist: Extracting ECDSA Keys from Qualcomm’s TrustZone. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2019.

– 228 –

BIBLIOGRAPHY

[288] Keegan Ryan. Return of the Hidden Number Problem. In IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2019.

[289] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security. IEEE Journal
on selected areas in communications, 2003.

[290] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. ZeroTrace: Oblivious Memory Primitives
from Intel SGX. In Network and Distributed Systems Security (NDSS) Symposium, 2018.

[291] Curt Schimmel. UNIX systems for modern architectures: symmetric multiprocessing and caching
for kernel programmers. Addison-Wesley Publishing Co., 1994.

[292] C. P. Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theor.
Comput. Sci., 1987.

[293] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3), January
1991.

[294] Guido Schryen. Security of Open Source and Closed Source Software: An Empirical Comparison
of Published Vulnerabilities. AMCIS 2009 Proceedings, 2009.

[295] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz.
kafl: Hardware-assisted feedback fuzzing for OS kernels. In USENIX Security Symposium, 2017.

[296] Michael Schwarz. https://twitter.com/misc0110/status/1129305720770498561, May 2019.

[297] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. Store-to-Leak Forwarding:
Leaking Data on Meltdown-resistant CPUs. arXiv:1905.05725, 2019.

[298] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice, Thomas Schuster, Anders Fogh,
and Stefan Mangard. Automated detection, exploitation, and elimination of double-fetch bugs
using modern CPU features. In Asia Conference on Computer and Communications Security
(AsiaCCS), 2018.

[299] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice, Thomas Schuster, Anders Fogh,
and Stefan Mangard. Automated Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In Asia Conference on Computer and Communications Security
(AsiaCCS), 2018.

[300] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas Prescher,
and Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary Data Sampling. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2019.

[301] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fantastic Timers and
Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In International
Conference on Financial Cryptography and Data Security, 2017.

[302] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical Enclave Malware with Intel SGX. In
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), 2019.

[303] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Malware
Guard Extension: Using SGX to Conceal Cache Attacks. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2017.

– 229 –

BIBLIOGRAPHY

[304] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug to gain kernel privileges.
Black Hat, 2015.

[305] Atle Selberg. An elementary proof of the prime-number theorem. Annals of Mathematics, 1949.

[306] Yannick Seurin. On the exact security of schnorr-type signatures in the random oracle model. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
2012.

[307] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan Boneh.
On the Effectiveness of Address-Space Randomization. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2004.

[308] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. Database Reconstruction from
Noisy Volumes: A Cache Side-Channel Attack on SQLite. arXiv preprint arXiv:2006.15007, 2020.

[309] Prateek Sharma and Purushottam Kulkarni. Singleton: System-wide Page Deduplication in
Virtual Environments. In international symposium on High-Performance Parallel and Distributed
Computing, 2012.

[310] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. Summarizing known attacks on transport layer
security (TLS) and datagram TLS (DTLS). RFC 7457, 2015.

[311] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicating Controlled-
Channel Attacks Against Enclave Programs. In Network and Distributed Systems Security (NDSS)
Symposium, 2017.

[312] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing Page
Faults from Telling Your Secrets. In Asia Conference on Computer and Communications Security
(AsiaCCS), 2016.

[313] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee,
1994.

[314] Signal. Private Contact Discovery Service. https://github.com/signalapp/
ContactDiscoveryService.

[315] Rohit Sinha, Sriram Rajamani, and Sanjit A Seshia. A Compiler and Verifier for Page Access Obliv-
ious Computation. Technical report, Technical Report UCB/EECS-2017-124, EECS Department,
University of California, Berkeley, 2017.

[316] Igor Skochinsky. Intel ME Secrets. Code Blue, 2014.

[317] Michael John Sebastian Smith. Application-specific integrated circuits. Addison-Wesley Reading,
MA, 1997.

[318] Jonathan Sorenson. An analysis of Lehmer’s Euclidean GCD algorithm. In International symposium
on Symbolic and algebraic computation, 1995.

[319] Evan R Sparks and Evan R Sparks. A security assessment of trusted platform modules computer
science technical report TR2007-597. Dept. Comput. Sci., Dartmouth College, Hanover, NH, USA,
Tech. Rep., TR2007-597, 2007.

– 230 –

https://github.com/signalapp/ContactDiscoveryService
https://github.com/signalapp/ContactDiscoveryService

BIBLIOGRAPHY

[320] ST Microelectronics. CC for IT security evaluation: Trusted Platform Module ST33TPHF2E mode
TPM2.0. https://www.ssi.gouv.fr/uploads/2018/10/anssi-cible-cc-2018_41en.pdf,
2019. Accessed: December 10, 2020.

[321] ST Microelectronics. ST33TPHF2ESPI Product Brief. https://www.st.com/resource/en/
data_brief/st33tphf2espi.pdf, 2019. Accessed: December 10, 2020.

[322] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU Register State using Microarchitec-
tural Side-Channels. arXiv:1806.07480, 2018.

[323] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path ORAM: An Extremely Simple Oblivious RAM Protocol. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2013.

[324] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. In Network and Distributed Systems Security (NDSS)
Symposium, 2016.

[325] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The First
Collision for Full SHA-1. In Annual International Cryptology Conference, 2017.

[326] Raoul Strackx and Frank Piessens. The Heisenberg Defense: Proactively Defending SGX Enclaves
against Page-Table-Based Side-Channel Attacks. arXiv preprint arXiv:1712.08519, 2017.

[327] strongSwan. Trusted Platform Module 2.0 - strongSwan. https://wiki.strongswan.org/
projects/strongswan/wiki/TpmPlugin, 2019. Accessed: December 10, 2020.

[328] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. Microarchitectural minefields: 4k-aliasing
covert channel and multi-tenant detection in IaaS clouds. In Network and Distributed Systems
Security (NDSS) Symposium, 2018.

[329] Atsushi Takayasu and Noboru Kunihiro. Partial Key Exposure Attacks on RSA: Achieving the
Boneh-Durfee Bound. In International Conference on Selected Areas in Cryptography, 2014.

[330] Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. Pearson, 2015.

[331] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Throwhammer: Rowhammer Attacks over the Network and Defenses. In USENIX
Annual Technical Conference (ATC), 2018.

[332] PC TCG. Client Specific-TPM Interface Specification (TIS) Version 1.2. Trusted Computing
Group, 2005.

[333] PC TCG. TPM 2.0 Mobile Command Response Buffer Interface. Trusted Computing Group, 2014.

[334] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance data with
PAPI-C. In Tools for High Performance Computing 2009. Springer, 2010.

[335] Philip Frank Terry. Method and apparatus for switching routable frames between disparate media,
May 2000. US Patent 6,061,356.

[336] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.4), 2019.
https://www.sagemath.org.

– 231 –

https://www.ssi.gouv.fr/uploads/2018/10/anssi-cible-cc-2018_41en.pdf
https://www.st.com/resource/en/data_brief/st33tphf2espi.pdf
https://www.st.com/resource/en/data_brief/st33tphf2espi.pdf
https://wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin
https://wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin

BIBLIOGRAPHY

[337] Daniel Townley and Dmitry Ponomarev. SMT-COP: Defeating Side-Channel Attacks on Execu-
tion Units in SMT Processors. In ACM International Conference on Parallel Architectures and
Compilation Techniques, 2019.

[338] Stephen M Trimberger. Field-programmable gate array technology. Springer Science & Business
Media, 2012.

[339] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. MeltdownPrime and Spec-
trePrime: Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence Protocols.
arXiv:1802.03802, 2018.

[340] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES, and Countermea-
sures. Journal of Cryptology, 2010.

[341] Trusted Computing Group. Protection Profile PC Client Specific TPM. https:
//trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_
TPM2.0_v1.1_r1.38.pdf, 2019. Accessed: December 10, 2020.

[342] Trusted Computing Group. TPM 2.0 Library Specification. https://trustedcomputinggroup.
org/resource/tpm-library-specification/, 2019. Accessed: December 10, 2020.

[343] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi Miyauchi. Cryptanalysis
of DES implemented on computers with cache. In International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2003.

[344] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous multithreading: Maximizing
on-chip parallelism. In International Symposium on Computer Architecture (ISCA), 1995.

[345] James Turnbull. The Docker Book: Containerization is the new virtualization. James Turnbull,
2014.

[346] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia Heninger. In search of CurveSwap:
Measuring elliptic curve implementations in the wild. In IEEE European Symposium on Security
and Privacy (Euro S&P), 2018.

[347] Jo Van Bulck. Side-Channel Attacks for Privileged Software Adversaries. PhD Dissertation, 2020.

[348] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In USENIX Security
Symposium, 2018.

[349] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel Genkin,
Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In IEEE Symposium on Security and Privacy
(S&P), 2020.

[350] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia, and Frank Piessens.
A Tale of Two Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2019.

– 232 –

https://trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

BIBLIOGRAPHY

[351] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A Practical Attack Framework for
Precise Enclave Execution Control. In Proceedings of the 2nd Workshop on System Software for
Trusted Execution, 2017.

[352] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying Microarchitectural Timing
Leaks in Rudimentary CPU Interrupt Logic. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2018.

[353] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. Telling
Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution. In
USENIX Security Symposium, 2017.

[354] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémentine Maurice,
Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

[355] Wim Van Eck. Electromagnetic radiation from video display units: An eavesdropping risk?
Computers & Security, 1985.

[356] Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi Maisuradze, Kaveh
Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue In-flight Data Load. In IEEE Symposium
on Security and Privacy (S&P), 2019.

[357] Mathy Vanhoef and Frank Piessens. Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2.
In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.

[358] Vassilios Ververis. Security evaluation of Intel’s active management technology, 2010.

[359] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. CacheD: Identifying
Cache-Based Timing Channels in Production Software. In USENIX Security Symposium, 2017.

[360] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler,
Haixu Tang, and Carl A Gunter. Leaky Cauldron on the Dark Land: Understanding Memory
Side-Channel Hazards in SGX. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[361] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD. IACR Cryptol. ePrint Arch., 2004.

[362] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulnerabilities. In
ACM/IEEE 30th International Conference on Software Engineering, 2008.

[363] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. CT-Wasm: Type-
Driven Secure Cryptography for the Web Ecosystem. Proceedings of the ACM on Programming
Languages, 2019.

[364] AF Webster and Stafford E Tavares. On the design of S-boxes. In Advances in Cryptology. Springer,
1986.

[365] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. Single Trace Attack Against RSA Key
Generation in Intel SGX SSL. In Asia Conference on Computer and Communications Security
(AsiaCCS), 2018.

– 233 –

BIBLIOGRAPHY

[366] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the
virtual memory abstraction with transient out-of-order execution. https://foreshadowattack.
eu/foreshadow-NG.pdf, 2018.

[367] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio, Thomas Eisenbarth, and Berk
Sunar. JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms. In IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2020.

[368] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MicroWalk: A Framework
for Finding Side Channels in Binaries. In Annual Computer Security Applications Conference
(ACSAC), 2018.

[369] WikiChip. Ivy Bridge - Microarchitectures - Intel. https://en.wikichip.org/wiki/intel/
microarchitectures/ivy_bridge_(client). Accessed: December 10, 2020.

[370] WikiChip. Kaby Lake - Microarchitectures - Intel. https://en.wikichip.org/wiki/intel/
microarchitectures/kaby_lake. Accessed: December 10, 2020.

[371] WikiChip. Skylake (client) - Microarchitectures - Intel. https://en.wikichip.org/wiki/
intel/microarchitectures/skylake_(client). Accessed: December 10, 2020.

[372] WikiChip. Macro-Operation Fusion (MOP Fusion). https://en.wikichip.org/wiki/macro-
operation_fusion, 2020.

[373] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. SEVurity: No Security
Without Integrity: Breaking Integrity-Free Memory Encryption with Minimal Assumptions. In IEEE
Symposium on Security and Privacy (S&P), 2020.

[374] WolfSSL. WolfSSL Intel SGX + FIPS 140-2! https://www.wolfssl.com/wolfssl-intel-
sgx-fips-140-2/. Accessed: December 10, 2020.

[375] G.M. Wolrich, V. Gopal, K.S. Yap, and W.K. Feghali. SMS4 acceleration processors, methods,
systems, and instructions, June 2016. US Patent 9,361,106.

[376] David Wong. Timing and Lattice Attacks on a Remote ECDSA OpenSSL Server: How Practical
Are They Really? IACR Cryptology ePrint Archive, 2015, 2015.

[377] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One Bit Flips, One Cloud
Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. In USENIX Security Symposium,
2016.

[378] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. SPEECHMINER: A Framework for Investigating
and Measuring Speculative Execution Vulnerabilities. In Network and Distributed Systems Security
(NDSS) Symposium, 2019.

[379] Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee. vCAT: Dynamic Cache
Management using CAT Virtualization. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2017.

[380] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems. In IEEE Symposium on Security and Privacy
(S&P), 2015.

– 234 –

https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/macro-operation_fusion
https://en.wikichip.org/wiki/macro-operation_fusion
https://www.wolfssl.com/wolfssl-intel-sgx-fips-140-2/
https://www.wolfssl.com/wolfssl-intel-sgx-fips-140-2/

BIBLIOGRAPHY

[381] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache Telepathy: Leveraging Shared
Resource Attacks to Learn DNN Architectures. In USENIX Security Symposium, 2020.

[382] K. Yap, G. Wolrich, S. Satpathy, S. Gulley, V. Gopal, S. Mathew, and W. Feghali. SMS4
acceleration hardware, November 2016. US Patent 9,503,256.

[383] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD
Cache Side-channel Attack. IACR Cryptology ePrint Archive, 2014.

[384] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In USENIX Security Symposium, 2014.

[385] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A Timing Attack on OpenSSL
Constant-time RSA. Journal of Cryptographic Engineering, 2017.

[386] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy, Shiki
Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In IEEE Symposium on Security and Privacy (S&P), 2009.

[387] Tatu Ylonen, Chris Lonvick, et al. The Secure Shell (SSH) Protocol Architecture, 2006.

[388] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christopher W
Fletcher. Speculative Taint Tracking (STT) A Comprehensive Protection for Speculatively Accessed
Data. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019.

[389] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. CloudRadar: A Real-time Side-channel Attack
Detection System in Clouds. In International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2016.

[390] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-VM Side Channels and
Their Use to Extract Private Keys. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2012.

[391] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A Software Approach to Defeating Side
Channels in Last-Level Caches. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2016.

– 235 –

	Introduction
	Computer Security and Cryptography
	Communication Security
	Resource Sharing and Secure Isolation
	Trusted Computing
	Pitfalls of Security Engineering

	Microarchitectural Security
	Contributions
	Main Contributions
	Other Contributions

	Outline of the Work

	Uncovering Microarchitectural Side Channels
	CPU Microarchitecture
	Out-of-order and Speculative Execution
	Memory Subsystem
	Multithreading

	Microarchitectural Side Channels
	Cache Attacks
	Generalization to other Shared Resources
	Side-channel Leakage in Practice
	The Rowhammer Paradigm

	MemJam Attack on Virtual Address Aliasing
	False Dependencies due to 4k Aliasing
	Memory Dependency Fuzz Testing
	Leaking with Intra-Cache-Line Resolution

	Beyond MemJam: Physical Address Aliasing
	Speculative Load Hazards
	The Spoiler Leakage
	Boosting Rowhammer and Cache Attacks with Spoiler
	Tracking Speculative Loads with Spoiler

	Summary

	Microarchitectural Data Leakage via Automated Synthesis
	Transient-execution Attacks
	Spectre & Meltdown
	Microarchitectural Data Sampling

	Automatically Exploring Meltdown Attacks
	Introducing Transynther
	Synthetisation Phase
	Evaluation phase
	Classification Phase
	Transynther Results

	Medusa: Pre-filtering Data
	Leakage Analysis
	Exploitation Methodology
	WC in Real-World Software
	Leakage Performance of Medusa

	Discussion
	Extending Transynther
	Meltdown Root Cause Generalisation

	Controlled Instruction-Level Attacks on Enclaves
	Attack's Characterization
	Microarchitectural Contention
	Controlled-Channel Attacks

	CopyCat: Instruction-Counting Side Channel
	Introducing CopyCat
	Building the Interrupt Primitive
	Instruction-Level Page Access Traces

	The Effectiveness of CopyCat
	Branch Shadow-Resistant Code
	Defeating Branch Shadowing Defenses

	Discussion

	Timing Analysis of Physically-isolated Elements
	Trusted Platform Module
	TPM Deployment
	Vulnreabilities and Shortcomings

	Remote Timing Attacks on TPM
	Precise Timing Measurement
	Timing Analysis of ECDSA
	Discovered Vulnerabilities

	Summary

	Microarchitectural Cryptanalysis
	MemJam-Based Correlation Analysis
	Breaking Pseudo-Constant-Time 3-DES
	Breaking Pseudo-Constant-Time AES
	Key Recovery from Cache-Protected SM4
	MemJam AES Key Recovery Results in SGX
	Discussion on MemJam Cryptanalysis

	Lattice Attacks on ECDSA
	Digital Signature Algorithms
	Hidden Number Problem and Lattices
	TPM meet Timing and Lattice Attacks
	Network Timing Attack on TPM ECDSA
	Breaking ECDSA Timing Protection in SGX

	Template MDS Attack on Constant-time RSA
	RSA Cryptosystem
	Sampling Partial RSA Secrets from OpenSSL
	Recovering full RSA keys using Lattice Attacks

	Single-trace Attacks on Public Key Schemes
	Unleashing CopyCat on WolfSSL
	Single-Trace Attack on DSA Signing
	Single-Trace Attacks on RSA Key Generation
	CopyCat-Based Cryptanalysis

	Revisiting Isolated and Trusted Execution
	Countermeasure Discussions
	Attack Detection
	Hardening Applications
	Architectural Fixes and Mitigations
	Coordinated Vulnerability Disclosure

	Open Problems
	General-purpose Software
	Nonubiquitous and Heterogenous Architecture

	Finale
	Assessment check-list
	Conclusion

