Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis

Daniel Moghimi'!, Moritz Lipp?, Berk Sunar!, and Michael Schwarz

2

I'Worcester Polytechnic Institute, Worcester, MA, USA
2Graz University of Technology, Graz, Styria, Austria

Abstract

In May 2019, a new class of transient execution attack based
on Meltdown called microarchitectural data sampling (MDS),
was disclosed. MDS enables adversaries to leak secrets across
security domains by collecting data from shared CPU re-
sources such as data cache, fill buffers, and store buffers.
These resources may temporarily hold data that belongs to
other processes and privileged contexts, which could falsely
be forwarded to memory accesses of an adversary.

We perform an in-depth analysis of these Meltdown-style
attacks using our novel fuzzing-based approach. We introduce
an analysis tool, named Transynther, which mutates the basic
block of existing Meltdown variants to generate and evaluate
new Meltdown subvariants. We apply Transynther to analyze
modern CPUs and better understand the root cause of these
attacks. As a result, we find new variants of MDS that only
target specific memory operations, e.g., fast string copies.

Based on our findings, we propose a new attack, named
Medusa, which can leak data from implicit write-combining
memory operations. Since Medusa only applies to specific
operations, it can be used to pinpoint vulnerable targets. In
a case study, we apply Medusa to recover the key during
the RSA signing operation. We show that Medusa can leak
various parts of an RSA key during the base64 decoding
stage. Then we build leakage templates and recover full RSA
keys by employing lattice-based cryptanalysis techniques.

1 Introduction

Microarchitectural side channels have been known for more
than a decade, with attackers mostly focusing on leaking
memory access patterns through shared CPU resources [48].
These side-channel leakages can be used to compromise spe-
cific secrets such as cryptographic keys [28, 63]. However, in
2018 a new generation of microarchitectural attacks, includ-
ing Meltdown [39] and Spectre [35] changed the perspective
by introducing data leakage from the CPU. These new attacks,
under the taxonomy of transient-execution attacks, rely on ex-

tracting secrets that are only visible in transient states within
the CPU [11]. Compared to previous side-channel attacks, the
significant impact of transient-execution attacks is that they
can leak actual data bits instead of access patterns.

Spectre attacks [21, 34, 35, 37, 40] miss-train branch pre-
dictors into executing control paths that might not be taken
by the architecture. Meltdown-style attacks [10, 39, 50, 52,
56, 57, 58] exploit the heavily optimized out-of-order load
operations in which faulting memory loads still proceed with
stale or illegal data. In both cases, the microarchitecture may
access secrets across security boundaries. These secrets, never
architecturally visible, can be transmitted via a covert channel,
e.g., using Flush+Reload [63]. Canella et al. [11] proposed a
taxonomy to classify transient-execution attacks based on the
cause of the transient-instruction sequence and the exploited
microarchitectural buffer. While this classification captures
the cause and targets of known variants in a structured way, it
does not provide enough information on how a certain attack
can be carried out. For most Meltdown attacks, there are mul-
tiple ways to trigger the leakage, e.g., some attacks seem to
require TSX to enable the leakage [25, 52], while others can
also leverage signal handlers or miss-speculation [10, 39].

Meltdown-type attacks exploit special events in the mi-
croarchitecture, which require so-called microcode assists.
Microcode assists execute software routines in the CPU to
handle operations which cannot be directly handled in hard-
ware, e.g., certain faults, or updating bits in page-table entries.
For some Meltdown attacks, microcode assists have enabled
new variants [10, 52]. In this paper, we propose a systematic
approach for evaluating data leakage due to the combination
of microcode assists caused by a load with dependent opera-
tions. To achieve this goal, we propose Transynther', a tool
to automatically generate and test the combination of known
building blocks for Meltdown attacks with various faults and
microcode assists. Furthermore, we use fuzzing-type tech-
niques to mutate, evolve, and combine building blocks. Tran-
synther can automatically evaluate whether the newly synthe-

! Transynther tool and Medusa attack code are available as an open-source
implementation on GitHub: https://github.com/vernamlab/Medusa

sized code variants are indeed a variant of a Meltdown attack
by trying to leak predefined values.

We automatically generated thousands of different com-
binations using Transynther. Transynther reproduced Melt-
down [39], ZombieLoad [52], RIDL [58], Fallout [10] (MS-
BDS), Store-to-Leak (S2L) [50], Spectre v1.2 [34], and Mi-
croarchitectural Load Port Data Sampling (MLPDS) [24].
Furthermore, with Transynther, we synthesized multiple new,
previously unknown variants to trigger these attacks. Con-
sequently, by analyzing the generated variants, we gained
additional insights into Meltdown-type attacks. We identi-
fied that the root cause of all known Meltdown-type attacks
is that an aborted load operation simply consumes any data
which can be fetched first, and provides them to dependent
operations.

In addition to reproducing known attacks, Transynther also
discovered new variations of MDS variants, which we refer
to as Medusa. Medusa provides more in-depth insight into
how the memory subsystem is implemented in Intel microar-
chitectures. Medusa specifically targets data values which
are transferred via the common data bus but are not normal
data loads. In addition to AVX2 loads, Medusa has the unique
property to observe the inner workings of implicit write com-
bining (WC) used by the CPU, e.g., fast string operations such
as rep mov. For WC, the CPU allocates parts of the line-fill
buffer to combine multiple stores to the same cache line to
increase the throughput. In contrast to ZombieLoad [52] and
RIDL [58], which leak arbitrary data from the line-fill buffer,
Medusa specifically targets data transfers caused by WC.

With Medusa, the leakage is extremely targeted and noise-
free, as only specific loads are leaked. Thus, while the property
to only leak data from WC sounds like a limitation, it is an
advantage over previous data-sampling attacks. Where data-
sampling attacks such as ZombielLoad [52] or RIDL [58]
require extensive post-processing to find the target data within
the leaked data, Medusa does not leak such large amounts of
unrelated data in the first place. This is especially important as
ZombieLoad and RIDL, in practice, leak too many unrelated
data when they are applied to applications that perform a long
sequence of operations. For instance, in our case study on
RSA, the computation steps, including loading the key from
the disk and performing the RSA signing operations, consists
of thousands of load operations that may not be interested for
an attacker to be leaked. In a case study, we use Medusa to
steal private RSA keys loaded in OpenSSL. This attack takes
at most 7 minutes during the online phase. By leaking various
blocks of the RSA private key, we can employ lattice-based
cryptoanalysis techniques to recover the entire key.

Finally, we discuss how the current mitigations against
MDS attacks apply to Medusa. We show that currently,
Medusa cannot be prevented if hyperthreading is enabled.
Hence, we stress that hyperthreading has to be disabled to
entirely prevent Medusa.

To summarize, we make the following contributions:

.. ~-.
: Core Core
L2 Caglie : Memory Memory
A4 [[
LFB L1 P Shared L3 Cache
WCB P
L3R L I I
‘ Store Buffer ‘ Load Buffer Clore Cloiig
Memory Order Buffer ’ Memory Memory

Figure 1: The fill buffer serves memory accesses that miss the
L1 cache. The WC buffer is a part of the fill buffer optimizing
multiple store operations that target the same cache line.

1. We introduce a new open-source tool, Transynther, to
analyze the CPU microarchitecture for Meltdown-style
vulnerabilities.

2. We provide insight into the root cause of Meltdown at-
tacks and disclose new exploitation methodologies.

3. We introduce the Medusa attack, exploiting implicit write
combining of memory store operations, €.g., rep mov.

4. In a case study, we use Medusa to recover RSA keys from
OpenSSL by exploiting leakages during key decoding.

Responsible Disclosure. We disclosed our initial finding to
Intel on June 24, 2019. Intel confirmed that the WC is part of
the fill buffer. The paper was under embargo until November
12,2019, as we exploit TSX Asynchronous Abort (TAA, CVE-
2019-11135) [25] in several proof of concepts.

2 Background

2.1 Superscalar Memory Architecture

Modern CPUs have multiple levels of caches and buffers to
mitigate the speed gap between execution units and the main
memory. Figure 1 illustrates the memory components on the
data path of an Intel processor. The last level cache (LLC)
which is shared across CPU cores is connected through an
interconnect bus to the main memory. Further, each core has
an L1 and L2 cache, consisting of multiple cache lines which
are usually 64 B. When the processor accesses data that is
not present in a cache level (cache miss), the corresponding
cache line is fetched from the next level of cache or the main
memory. The processor also uses a fill buffer to service mem-
ory accesses missing in the L1 cache. The data in the fill
buffer can be forwarded to memory loads before filling the
entire cache line. ZombielLoad [52] and RIDL [58] showed
that Intel processors may falsely forward data that resides in
the fill buffer from a benign to a malicious load.

Memory operations are executed out of order and specu-
latively. The processor may execute a load before preceding
stores to avoid pipeline stalls due to the potential dependency
of the load on stores. The store buffer, as part of the memory
order buffer (MOB), temporarily holds the data and metadata
for stores before committing them to the cache. The CPU may

forward data from the store buffer to a load (store-forwarding).
The CPU may fail to predict correct dependencies between
the load and stores [30, 46]. While such failures are finally
resolved before committing the results, it facilitates transient
execution attacks [10, 21, 50].

Memory Types. CPUs support multiple per-page memory
types with different policies for caching and ordering guar-
antees. The supported memory types on x86 are write-
back (WB), write-through (WT), write-protect (WP), write-
combining (WC), and uncachable (UC). Most pages are write-
back, which allows them to be cached and written back to
the memory at a later point. Both UC and WT write data
directly to memory. Write-combining memory, as discussed
later on, tries to reduce the number of bus requests by com-
bining multiple writes to the same cache line into a single
request.

2.2 Write Combining

A memory store has to update core-private caches, the LLC,
and possibly the main memory. Thus, for performance, it is
beneficial to combine multiple stores into a single request.
This reduces the number of bus requests and cross-core snoops
that update the core-private copy of the cache. Employing
write combining (WC), the CPU temporally holds the data of
store operations to the same cache line in an internal buffer,
until all the data bytes that modify that cache line are available.
The WC buffer can be either implemented as a dedicated
component as in AMD CPUs [1] or as part of the fill buffer
as in Intel CPUs [27]. WC is often used for memory where
memory ordering guarantees are weak, e.g., for frame buffers
of graphic cards, which are usually treated as write-only by
programmers [22].

2.3 Advanced CPU Features

Simultaneous Multithreading. Simultaneous multithread-
ing (SMT) allows multiple threads to execute on the same
core simultaneously while sharing the same resources. These
threads are architecturally isolated from each other accord-
ing to memory protection semantics and only access their
intended data. This allows one thread to use the available
resources not used by other threads.

Intel Hyperthreading technology implements SMT by shar-
ing the core between two simultaneous threads, logical CPUs.
These logical CPUs share some of the resources such as the
store buffer in a compartmentalized fashion where the re-
source is halved into two separate sections upon activation of
the second thread. Other resources, such as the fill buffer, are
time shared. Intel Hyperthreading has suffered from various
microarchitectural side channels due to the time-sharing of
resources such as translation look-aside buffer (TLB) [17] and
execution ports [2]. MDS attacks demonstrated data leakage
due to sharing of various buffers within the core [24, 52, 58].

Transactional Memory. Intel Transactional Synchronization
Extension (TSX) implements Hardware Transactional Mem-
ory by extending the instruction set with a new set of barriers
in which application developers can define a block of code
as atomic by surrounding it with the xbegin and xend in-
structions. The CPU only commits the results of a transaction
if the entire block executes successfully. TSX transactions
are aborted on conflicting cache and memory operations that
may affect the atomicity of the transaction, as well as on
interrupts. Intel TSX has been exploited for both attack and
defense [18, 31, 51]. In Meltdown attacks, TSX can be abused
as a silent event suppression mechanism that may enable fur-
ther leakages (cf. Section 2.4).

2.4 Microarchitectural Attacks

Flush+Reload. Flush+Reload [63] exploits the difference in
memory-access times for cached and uncached shared mem-
ory pages. In a Flush+Reload attack, the attacker flushes the
cache line for a shared memory address using the c1flush
instruction and subsequently measures the access time to
the memory. If the execution time is high, the data has not
been cached. However, if another execution context accesses
the address, the attacker observes a low access time as the
data is cached. Flush+Reload has been used to attack cryp-
tographic implementations [5, 20, 29] as well as to spy on
user’s behavior [19, 38, 64]. As in previous meltdown-type
attacks [39, 52, 57], we use Flush+Reload as a covert channel
from the microarchitectural to the architectural domain.

Transient-Execution Attacks. Modern CPUs employ out-
of-order and speculative execution to increase performance.
With out-of-order execution, CPUs can execute instructions
further in the instruction stream as long as their dependencies
are satisfied. Similarly, speculative execution enables a CPU
to guess the outcome of a conditional branch to continue
executing the most likely path.

If an instruction which was executed out of order or specu-
latively was wrongly executed, this instruction is simply not
committed to the architectural state. However, the instruction
might have had a side effect on the microarchitectural state,
such as the cache. In this case, such an instruction is called a
transient instruction [11, 35, 39]. Transient-execution attacks
exploit such transient instructions to leak data and are divided
into Meltdown-type and Spectre-type attacks [11].

While Spectre-type attacks exploit transient instruc-
tions caused by wrongly predicted conditional branches, in
Meltdown-type attacks, the attacker leverages out-of-order
execution following a faulting load. The transient instructions
after the faulting load still have access to the data and can
encode it into the microarchitectural state [10, 39, 50, 52, 53,
57, 58, 61]. Using a covert channel, such as Flush+Reload,
the attacker can then bring the microarchitectural state to the
architectural state, ultimately leaking the secret.

P1: Synthetisation P2: Evaluation

Execute
Code

P3: Classification

Random
Instruction

RIDL 3
allout

ZombieLoad|

Meltdown

Performance
Counters

Potential
Meltdown
Code Sequence
(=]
Classification

Manual
Analysis

Figure 2: Transynther phases: After mutating a new code
sequence for a meltdown-style attack, the code is evaluated.
If there is a leakage detected, the sample is analyzed further
during the classification phase.

3 Automatically Exploring Meltdown
Attacks

We introduce Transynther, an automated approach for ex-
ploring Meltdown-type attacks. Transynther uses an innova-
tive techniques based on fuzzing to systematically explore
Meltdown-type attacks. The aim is to identify new variants of
existing attacks, which are, e.g., faster, less complex, or are
not mitigated, as well as entirely new Meltdown-type variants.

Transynther works in three phases, as outlined in Figure 2.
In the first phase, the synthetisation phase, Transynther uses
building blocks of existing attacks to mutate and combine
them to potential new attacks. In the second phase, the eval-
uation phase, Transynther executes the code from the syn-
thetisation phase and evaluates whether the code leads to data
leakage. Finally, if the evaluation phase was successful, the
classification phase tries to automatically classify the source
of the leakage using performance counters.

3.1 Synthetisation Phase

The first phase is the synthetisation phase. In this phase,

Transynther generates a code snippet, which is a potential

Meltdown-type attack. For this, Transynther relies on building

block from existing Meltdown-type attacks, including Melt-

down [39], ZombieLoad [52], RIDL [58], Foreshadow [57],

Fallout [10], Meltdown-PK [11], Meltdown-AVX [24], and

Meltdown-RW [34].

The common pattern for all these attacks is as follows:

(D Preparing the microarchitectural state (e.g., flushing, ac-
cessing, or storing data).

(2) Executing a load operation causing a fault (as
Schwarz et al. [52], we consider microcode assists as
microarchitectural faults).

(3 Consuming the loaded data with dependent instructions
and encoding it in a microarchitectural element.

As the encoding in (3) does not affect the root cause of a
Meltdown-type attack [39, 56], we always encode the loaded
value in the cache, which allows us to recover the encoded
values using a Flush+Reload covert channel. This approach is

used in the majority of Meltdown-type attacks [10, 11, 34, 39,
52, 53, 57, 58, 61]. Initially, Transynther sets up two pools
to be used in (2). One pool contains possible load operations
and one contains possible load targets:

Load operations. Memory Loads are operations that load
data from memory addresses into registers. The simplest
load operation is a mov from a memory address to a general-
purpose register. Transynther supports mov with all possible
sizes, from 8 bits to 64 bits. Additionally, aligned and un-
aligned AVX loads ({v}movaps/{v}movups) with a size of
128 and 256 bits are supported.

Load targets. Load targets are virtual addresses with a sys-
tematic pattern of different setup of the page-table entry,
as discussed by Canella et al. [11]. As a starting point, we
rely on load targets with certain page-table bits, which were
already used for Meltdown-type attacks. This includes the
user-accessible bit [39, 52], accessed bit [10, 52], present
bit [10, 57, 58, 61], writable bit [34], and protection key [11].
For a systematic approach, we also add load targets with page-
table bits that have not been used in successful Meltdown-type
attacks, including the dirty bit, write-through bit, uncachable
bit, size bit, and non-executable bit. Finally, we also add ad-
dresses that do not have a valid mapping to physical pages,
such as non-canonical addresses (addresses where the bits 48
to 63 are different than bit 47, e.g., 0x1234567812345000)
and physically unmapped addresses, e.g., NULL.

Furthermore, Transynther creates a victim that injects
known data throughout microarchitectural buffers by repeat-
edly loading and storing that data to different virtual addresses
and memory types. The victim can either be a separate applica-
tion running on the sibling CPU thread or running time-sliced
on the same thread, e.g., using multithreading.

During synthesis, Transynther randomly chooses, mutates,
and combines building blocks for (1) and (2). To prepare the
microarchitecture ((1)), Transynther randomly chooses an op-
eration (load, store, or flush) and an address from the load-
target pool. Then, the address is mutated by adding a random
offset between 0 B and 4 kB. This ensures that the address
still maps to the same page in most cases, however, to the
page offset of a different cache line. Note that there is the case
that a multi-byte load might lead to a split-page load if parts if
the offset is too large. We intentionally allow this behavior, as
split-page loads are also corner cases that may trigger leakage.
For (2), Transynther randomly chooses a load operation and a
load target. Similarly, a randomly chosen offset between 0 B
and 4 kB is added to the load target address.

Transynther also randomly inserts independent operations
between the preparation of the microarchitecture ((1)) and
the faulting load ((2)). Such operations are, e.g., nops (no op-
erations), ALU operations on unrelated registers, as well as
additional architectural faults. These instructions add a certain
amount of timing differences and thus increase the chance of
triggering a race condition in the pipeline. These operations
have been shown to increase the leakage rate for existing

attacks, as observed in the published proof-of-concept imple-
mentations for other transient-execution attacks [39, 52].

Finally, Transynther adds another load operation consum-
ing the value of the faulting load in (2) and encoding it into the
cache. This operation simply accesses the ' page in a 256-
page array, where n is the byte value provided by the faulting
load in (2) [11, 39]. Again, Transynther randomly inserts in-
dependent operations between this step and the faulting load
to vary the timing between (2) and (3).

3.2 Evaluation Phase

In the evaluation phase, Transynther evaluates whether the
synthesized code snippets from the synthetisation phase lead
to data leakage. Transynther uses an evaluation framework
consisting of a preparation part that fills microarchitectural
buffers, the synthesized code snippet augmented with excep-
tion suppression, and a Flush+Reload loop to recover the
values encoded in (3). The code in the evaluation framework
is executed in an endless loop for a user-specified amount
of time, e.g., 2 seconds. The values recovered using Flush+
Reload are compared to the known values from the prepa-
ration part. For every evaluated snippet, Transynther logs
the number of correct and wrong leaked values. Snippets for
which correct leakage is detected are candidate snippets used
in the classification phase. Snippets that do not leak correct
values are discarded and not further analyzed. In contrast to
traditional application fuzzing, there is no feedback in our
approach enabling Transynther to improve a snippet. The only
feedback that the CPU provides is whether the snippet leaks
data or not. Moreover, as we try to discover vulnerabilities in
the microarchitecture, we cannot use a CPU emulator [42].

3.3 C(lassification Phase

In the final phase, Transynther analyzes the source of the
leakage using microarchitectural buffer grooming,and perfor-
mance counters.

Microarchitectural Buffer Grooming. The main idea of mi-
croarchitectural buffer grooming is to put microarchitectural
buffers into a known state. To achieve this, we fill every mi-
croarchitectural buffer with known data that is unique for
each buffer. Hence, if any leakage is observed, the leakage
source can be inferred from the values. In the simplest case,
each buffer contains a repeated, single printable character.
For example, by storing several ‘S’-characters, we “fill” the
store buffer with this character. If we then leak multiple ‘S’-
characters, we can consider the store buffer as a potential leak-
age source. By having a unique character per buffer, buffer
grooming provides an elementary form of data taint track-
ing [4]. In the case of data leakage, Transynther at least knows
the origin of the data.

For buffer grooming, we only consider on-core data buffers,
i.e., the L1 data cache, store buffer, line-fill buffers, load buffer,

load ports, and WC buffers. While buffer grooming is straight-
forward for certain buffers, e.g., the L1 cache, it is more diffi-
cult for other buffers, e.g., the line-fill buffer. Fortunately, Intel
provides software sequences for mitigating some of the MDS
attacks if microcode update cannot be used. These software
sequences are designed to zero-out the data in all microarchi-
tectural data buffers [24], i.e., it sets the values in all buffers
to a known value of zero.

mov %][scratch], Yerdi

Ifence

5 orpd (%[zero_ptr]), JexmmO
orpd (%[zero_ptr]), %xmmO
5 xorl %eax, %eax

1: clflushopt 5376(%][scratch],%rax,8)
addl $8, %eax

cmpl $8%12, %eax

9 jb 1b

10 sfence

11 movl $6144, %ecx

12 xorl %eax, %eax

13 rep stosb

14 mfence

=

Listing 1: Software sequence to overwrite all microarchitec-
tural buffers for Skylake and newer microarchitectures [24].

Listing 1 shows the software sequence used to zero-out the
buffers on Skylake and newer microarchitectures. In Lines 3
to 4, the load ports are zeroed out. Then, 12 cache lines are
flushed (Line 6) to ensure that 12 of the subsequent writes in
Line 13 have to go through the 12 line-fill-buffer entries [52].
Using rep stosb additionally ensures that the WC-buffer
entries of the line-fill buffer are also used, and thus zeroed-
out. For buffer grooming, we can rely on an adapted software
sequence. Instead of writing zero to all buffers, we write a
repeated, unique character to every buffer. This is as simple as,
e.g., letting zero_ptr point to a memory content not contain-
ing 0 but ‘L’-characters to ensure that load port is overwritten
with repeating ‘L’s. Moreover, we can replace the rep stosb
with a normal mov in a loop to distinguish WC buffers from
general line-fill buffers.

The obvious limitation is that Transynther cannot track
the actual flow of the data in hardware. For example, data
in the store buffer could have already been written to the L1
cache and subsequently been leaked from the L1 cache. Still,
for Transynther it looks as if the data was leaked from the
store buffer. To reduce the number of false classifications, we
additionally rely on hardware performance counters.

Performance Counters. To gain additional insight on the
leakage source, we augment Transynther with the ability to
record hardware performance counters while leaking val-
ues. Thus, in addition to the source of the leaked values, we
also observe the active microarchitectural elements. Table 1
shows the performance counters we used.Some of these per-
formance counters have already been shown to successfully
identify leakage sources [30, 52]. Transynther correlates the

Table 1: The performance counters used in Transynther to
identify the active microarchitectural elements.

Counter

Description

MEM_LOAD_RETIRED.FB_HIT
MEM_LOAD_RETIRED.L1_HIT
MEM_LOAD_RETIRED.L2_HIT

Data loaded from a line-fill-buffer entry.
Data loaded from the L1 data cache.
Data loaded from the L2 data cache.
L1D_PEND_MISS.FB_FULL Data is neither in L1 nor in fill buffer.
LD_BLOCKS . STORE_FORWARD Store buffer blocks load.
LD_BLOCKS_PARTIAL.ADDRESS_ALIAS Load blocked by partial address match.
MEM_INST RETIRED.SPLIT_LOADS Data spans across two cache lines.

performance-counter values with the number of leaked bytes
using the Pearson correlation coefficient (Figure 8 in Ap-
pendix B). A high positive correlation between the number of
leaked bytes and the events for a microarchitectural element
indicates that this element is involved in the leakage. With
microarchitectural buffer grooming and the correlation coeffi-
cient from the performance counters, Transynther can provide
an educated guess of the leakage source.

3.4 Transynther Results

In our first set of experiments on Intel CPUs, we ran Tran-
synther for about 46 500 test cases distributed on the three
Intel Core 17-7700 (Kaby Lake), i17-8650U (Kaby Lake R),
and 19-9900K (Coffee Lake) CPUs. We ran each test case for
2 s, totaling about 26 CPU hours. Transynther generated 5100
code snippets, which showed transient leakage. Based on the
classification and subsequent manual analysis, we filtered the
generated code snippet to 100 interesting cases with a unique
code and leakage pattern. We identified multiple classes of
leaking code sequences, as described in Section 3.4.1.

We also ran some tests on an AMD Ryzen 5 2500U and
show that while there is no data leakage on AMD, AMD is
not by-design immune to the root cause of Meltdown-type
attacks. In our second experiment, we ran Transynther for
about 10000 test cases on an AMD machine. Similarly, we
ran each test case for 2s, totaling about 5 CPU hours. We
report our findings in Section 3.4.2.

3.4.1 Intel

Split Cache Access. Transynther reproduced various variants
of split cache access that lead to MLPDS. Split accesses re-
fer to memory accesses that span over two cache lines and
are handled differently from normal loads accessing a sin-
gle cache line. In the generated proof of concepts, we can
observe that when split access is suffering a faulty load, it
directly leaks the data that is loaded by the sibling CPU thread
(). Split access works for page faults (user-accessible and
present), as well as for microcode assists caused by setting the
accessed bit. We only saw MLPDS leakage on Kaby Lake and
Kaby Lake R but not on the Coffee Lake microarchitecture.
Another observation is that MLPDS with split access works
much faster when there is a page fault caused by accessing a

non-present page before the target faulty load”. In contrast,
a page fault caused by accessing a non-user-accessible page
does not increase the leakage rate. Split accesses can also be
triggered via vector move instructions ((2)), which lead to the
same behavior and leakage.

Vector Move. A faulting vector load instruction with cor-
rect alignment and without crossing a cache line can leak
data ((3)). * Depending on which part of the vector is read, it
can leak different parts of the implicitly write-combined data.
Prior faults also affect which part of the data is leaked. We
hypothesize that this is due to the different time it takes to
handle the exception for the fast string copy operation. Fault-
ing vector loads also show fast leakage for a non-canonical
address, whereas a simple non-canonical fault requires addi-
tional memory grooming to work. In contrast, to split cache
accesses, we did not observe leakage for a page fault in our
setup of microarchitectural buffer grooming. Note that while
Intel refers to all these cases as MLPDS [24], we distinguish
the specific case of leaking from implicit WC.

AVX Alignment Fault. Transynther created many variants of
alignment-enforcing vector loads, e.g., vmovaps, in combina-
tion with unaligned addresses, leading to a general-protection
exception. The results indicate that the alignment exception is
prioritized in the pipeline as it does not depend on the address
type (®). In contrast to (3), (4) also works with page faults
and even valid addresses that are not causing any faults for
regular memory operations, €.g., Vmovups Or mov.

Store-to-leak. Transynther showed that during a TSX trans-
action, Store-to-leak [11] works on all addresses except for
non-present addresses ((3)).

Transynther also generated a case that when an unrelated
rep mov instruction is executed before the store, Store-to-
leak does not forward the data anymore. We further noticed
that adding a fence instruction between the store and load
prevents Store-to-leak. For Fallout [10], it has no effect ((6)).

4K-Aliasing Forwarding (Fallout). As discovered in Fall-
out [10], store-to-load forwarding can falsely forward data
when the least-significant 12 bits of the store and load ad-
dress match [46]. Transynther reproduced combinations of
addresses that can forward when the store and load are a mul-
tiple of 4kB apart ((7)). We verified that false forwarding on
4 kB aliasings only works with supervisor fault and access-bit
assist. Transynther showed that the forwarding is agnostic to
the address of the store, i.e., any store regardless of whether
the target is a valid or invalid address is forwarded as far as it
meets the 4 kB aliasing condition.

Store-to-load Forwarding and AVX. In our experiments,
both Fallout and Store-to-leak [10] also work with aligned

2In contrast to non-canonical addresses, Intel microarchitectures do not
treat the null addresses differently than any other non-present pages.

3Vector load instructions can enforce alignment e.g., movaps or be
alignment-agnostic e.g., movups. A correct alignment here means that either
the address of the load is aligned, or the alignment-agnostic version is used.

Table 2: Leakage variants discovered by Transynther.

Case | Preparation Store Load Name
©) (access @) , random instructions) - <+@/™Q MLPDS
@ (access @) , random instructions) - AVX <+ &/T/Q MLPDS
® (access @) , random instructions) - AVX + @ 1 T/ <%> Medusa
@) (access @) , random instructions) - AVX 2+ Q/M/Q@/<%>/v | Medusa
® - store (to load) &/ Ty/<x>/ S2L
® (rep mov + store, store + fence + load) store (to load) & /tb /<R> [-
@ - store (4K Aliasing) + @ / T/ Q@ /<%>/ @/ MSBDS
- store (4K Aliasing, to load) + @ /T /@ /<%>/ | AVX 3+ &/ Tn/@/<%>/ | MSBDS, S2L
N
©® (Sibling on/off) store (random address) + @) &/ <%> MSBDS
@ (Sibling on/off + clflush (store address)) | store (Cache Offset of Load) + @ & /1 <%> MSBDS
m (Sibling on/off + repmov (to Load)) store (to Load) AVX 2+ &/ T/Q/<%x>/ | Medusa,
MLPDS
@ - Store (Unaligned to Load) &/ @] <%> Medusa
@ (random instructions) AVX Store (to Load) <x> Medusa,
MLPDS,
MSBDS
- random fill stores <%> MSBDS

<%> Non-canonical Address Fault () Non-present Page Fault

& Supervisor Protection Fault = AVX Alignment Fault

Try Access-bit Assist =¢ Split-Cache Access Assist v~ Access without fault or Assist

AVX loads. However, when the load suffers a vector align-
ment general-protection exception, Store-to-leak and Fallout
both ignore the address types for both stores and loads ((3)).

Store-Forwarding and Faulting Stores. Transynther dis-
covered that faulting stores can be forwarded independently
of address aliasing and matching. In (9), we perform a store
to non-present addresses causing a page fault, e.g., a null ad-
dress. When the sibling thread is turned on and off, the store
is forwarded to the faulting load without any aliasing. Inter-
estingly, we can still index over which byte of the store to be
leaked. This variant of MSBDS only works with supervisor
fault and non-canonical address exceptions.

Store Forwarding and Cache Aliasing. Transynther also
created code sequences that leak the store data based on alias-
ing of only the cache offset. This is in contrast to the current
understanding that only full address matching or 4 kB aliasing

forwards the data ().

Store Forwarding and Stale Load Forwarding. As we
mentioned in various cases, grooming the pipeline may af-
fect which data will be forwarded/leaked first. For instance,
Transynther generated a multitude of proof of concepts that
different types of buffers and values can be leaked with vec-
tor alignment exception. We only mention one example here
that, Store-to-Leak can be turned into to a case where both
the store, and a value from the sibling thread (MLPDS or
Medusa) are leaked. In this case, we prepared the architecture
with a rep mov instruction with the destination address being
the faulty load address. When the sibling thread is switching
on/off, we see that both the forwarded store and the values
loaded by the sibling thread are leaked (@).

In this proof-of-concept, rep mov which is handled by
a specific microcode assist [26], is causing the value from
a sibling thread to be loaded instead of the expected store-

forwarding, i.e., the value stored previously. We investigated
the effect of rep mov and found out that we can use it to create
a new variant of leakage from the WC buffer (Section 4.2.3).

Unaligned Store Forwarding. We also found using Transyn-
ther that unaligned store forwardings can leak values from a
sibling thread. This is a special case of store-forward in which
the store and load overlap partially, but the actual data bytes
on the store can not be forwarded to the load. We investigate
this case further and use it as a new attack variant for Medusa
in Section 4.2.2 ((12)).

Non-canonical Addresses. Non-canonical addresses are han-
dled differently from regular memory addresses on Intel
CPUs [55]. During an early stage of address decoding, the pro-
cessor converts a 64-bit address to a compacted form, as the
actual supported address space is not 64-bit. During this con-
version, if the address does not follow the canonical form [27],
a general-purpose exception will be thrown. We also verified
that there is no page table walk for non-canonical addresses
and an early mechanism throw an exception matching the
description in the patent.

Medusa observed various cases where the combination of
non-canonical address faults will leak data with a different
behavior. For instance, store-to-leak on a no-canonical address
may not always leak the value of the store. Instead, depending
on specific grooming of the architecture, we see that both
the store and loads from the sibling thread are leaked (@).
Another interesting observation is that in certain cases for the
store buffer, a non-canonical fault would always leak the last
store disregarding any type of aliasing. In this case, we have
filled the store buffer with various valid stores, and depending
on what state the store buffer will be (a different set of random
stores), there are cases where the last store will always be
forwarded to the load ().

Transactional Asynchronous Abort (TAA). The Transac-
tional Asynchronous Abort (TAA) [25] represents another
vulnerability allowing to leak data from the same microarchi-
tectural buffers as MDS. TSX transactions can be aborted by
data conflicts, resource exhaustion, certain instructions, syn-
chronous exception events, e.g., page faults, or asynchronous
events within the pipeline [27].

We recorded the performance counters statistics of differ-
ent variants of Medusa, ZombielLoad [52] and RIDL [58]
in Appendix B. We observed that only Variant 2 of Zom-
bieLoad [52] exploits TAA by actively inducing asyn-
chronous aborts as shown by the high number of the
tx_mem.abort_conflict counter. Other variants that use
TSX for exception suppression only show synchronous aborts
and hence do not exploit TAA. However, in the rare case
that an unrelated event, such as an interrupt or cache eviction,
asynchronously aborts the transaction during the load, these
variants could also trigger TAA.

342 AMD

Exception Bypass. One of the requirements for Meltdown-
type attacks is to bypass exceptions in an out-of-order fashion.
The results from Transynther suggest that the AMD Zen mi-
croarchitecture might potentially be vulnerable to Meltdown-
type attacks. We found that various exceptions, such as divi-
sion by zero, an aligned vector store general-purpose excep-
tion, as well as a faulting store to a supervisor address, do
not stop the out-of-order execution. In line with the AMD
whitepaper [3], some of the exceptions are bypassed specula-
tively. Hence, an important requirement for Meltdown is also
present on AMD CPUs, the forwarding of data from faulting
instructions. CPUs immune to Meltdown-type attacks have
to ensure that operations depending on a faulting instruction
cannot get the transient data, e.g., by stalling. While AMD en-
sures that for page faults, they do not ensure that property for
other faulting instructions, e.g., General Protection Memory
Access (cf. AMD whitepaper [3], page 5). While we could
not show data leakage that violates a security guarantee, e.g.,
leakage from the kernel, AMD is not by-design immune to
the root cause of Meltdown-type attacks.

Vector Move Alignment Fault. We also observed that the
faulty vector alignment exceptions are handled differently
than other faulty loads. In particular, these exceptions do not
block the data flow, and we observe that the pipeline will
still speculatively consume the data despite the exception. We
observe that the value of the memory page or the value that
is written recently to the memory page will be leaked using
a Meltdown-style gadget. Again, this does not violate any
architectural data flow, but from a microarchitectural stand-
point, it shows that computation over transient data that was
not supposed to be available is feasible.

3.5 Meltdown Root Cause Generalisation

From the vast amount of results generated by Transynther,
we can generalize the common root cause of known Melt-
down attacks. As stated by Canella et al. [11], the leakage
for all known Meltdown attacks is caused by a faulting load,
where microcode assists are considered as microarchitectural
faults [52]. In all attacks, we see the same behavior, that the
faulting load does not stall and thus cannot simply return no
data. As a consequence, the faulting load transiently returns
data that can be accessed immediately and where at least parts
of the address match.

The microarchitectural element from which an attack leaks
depends on the microarchitectural implementation of data-
forwarding checks, and where the fault occurs. For example,
ZombieLoad and Fallout exploit the same fault as the orig-
inal Meltdown attack, and RIDL exploits the same fault as
Foreshadow. In the case of RIDL and Foreshadow, it is the
cleared present bit in the page-table entry of the load target.
In the case that the L1 cache contains data with an address
that matches the page-frame number, the load simply takes
this value. This case is known as Foreshadow or Meltdown-P-
L1 [11]. If this is not the case, e.g., because the page-frame
number is 0 in the case of a NULL-pointer, the next possibil-
ity for data with partial address matches is the line-fill buffer.
This case is known as RIDL or Meltdown-P-LFB [11]. Sim-
ilarly, for Meltdown, ZombieLoad, and Foreshadow, where
the user-accessible-bit in the page-table entry is exploited.
First, the store buffer is checked in parallel with the L1 data
cache. If a store-buffer entry has a partial address match, the
faulting load consumes this data, which is known as Fallout or
Meltdown-US-SB [10]. Otherwise, if the cache can provide
data with partially matching addresses, this is considered as
Meltdown-US [11]. In case the L1 cache cannot satisfy the
request due to a cache miss or a cache-line conflict, the line-
fill buffer can provide the data, resulting in ZombieLoad [52]
or Meltdown-US-LFB [11].

Hence, one of the insights from Transynther is that the type
of the fault is less important than where the fault occurs, i.e.,
which microarchitectural element is the “closest” to the fault
from which the faulting load can consume data.

4 Medusa: Pre-filtering Data

In this section, we further evaluate a novel ZombielLoad vari-
ant, which we discovered using Transynther. First, we show
that Medusa allows prefiltering leaked values. Medusa only
leaks values used in implicit WC by exploiting the microarchi-
tectural implementation of the WC buffer. Second, we show
3 different variants of Medusa, which each have unique prop-
erties. Finally, we analyze potential attack targets for Medusa
based on where implicit WC is used in real-world software.

4.1 Leakage Analysis

To evaluate the practicality of Medusa, we first analyze the
leakage of Medusa. This includes the source of the leakage as
well as the leakage pattern, i.e., how much control an attacker
has over the leakage and how much noise is in the leaked
data. We first reduced the generated snippet, i.e., we removed
instructions as long as the leakage was still visible.

4.1.1 Leakage Source

For the leakage source, Transynther already provides an ed-
ucated guess that the leakage source of the snippet is the
fill buffer. For Medusa, Transynther reports a Pearson coeffi-
cient of r, = 0.99 for the fill buffer, while the correlation for
the other performance counters is not statistically significant.
However, the only leaked value is the character written with
rep stosb. Hence, in contrast to ZombieLoad [52], Medusa
can only leak from a part of the line-fill buffer.

We additionally verify that using the publicly available
proof-of-concept for ZombieLoad. Using this victim, we do
not see any leakage when using Medusa, while we see a strong
leakage when using the ZombieLoad attack. We also used the
public proof-of-concept for RIDL [58]. Interestingly, RIDL
only works when reading data after a flush and a memory
barrier. If either the flush or the memory barrier (i.e., cpuid
or mfence) is missing, we do not get any leakage.

In Table 3, we compare different victims and whether dif-
ferent variant of MDS attacks (ZombieLoad, RIDL, Fallout)
or Medusa can leak data from these victims. While data larger
than 128 bits, e.g., rep mov, can also be leaked with Zom-
bieLoad (same and cross hyperthread) or Fallout (same hyper-
thread), Medusa only leaks data larger than 128 bits. Hence,
while Medusa does not exploit any new data source, it targets
exactly one type of victim, and there is no unrelated data from
other processes.

WC and Fill Buffer. According to Intel, their microarchitec-
tures use the line-fill buffer as WC buffers [23]. Thus, offi-
cially, 10 line-fill-buffer entries can be used for WC [27].
Schwarz et al. [52] experimentally verified this for pre-
Skylake microarchitectures but detected 12 line-fill-buffer
entries since Skylake. We devised several experiments to an-
alyze the WC-behavior of the line-fill buffer for all memory
types supported on x86_64 (cf. Appendix A).

Implicit WC. While there is an explicit WC memory type,
there are certain instructions that always use WC independent
of the underlying memory type, e.g., non-temporal stores. De-
pending on the CPU, Intel also documents that non-temporal
loads (MOVNTDQA) may reduce the number of cache evictions
by leveraging the WC buffer [27]. Recent Intel CPUs support
fast-string operations via the rep mov and rep stos instruc-
tions [26, 27]. These instructions do not guarantee any order
of the written data [27]. Hence, they can employ WC to re-
duce the number of write requests sent on the memory bus.

.
=}
2 102
Q
10" | | | | | B
0 50 100 150 200 250
Byte offset

Figure 3: Leaking values with Medusa when copying a 256-
byte buffer using rep mov shows an interesting pattern. While
all bytes can be leaked, certain offsets in the buffer have a
much higher probability of being leaked.

We verified that with Medusa, we can leak the values both
for explicit WC, i.e., memory marked as WC, as well as im-
plicit WC, i.e., MOVNTDQA, rep mov, and rep stos. Hence,
Medusa has the unique property among all MDS attacks that
the leakage is filtered by instruction types, i.e., the amount of
unrelated data is significantly less than in other attacks.

4.1.2 Leakage Pattern

Figure 3 shows the leakage pattern for Medusa when copying
a 256-byte buffer in the victim application using rep mov
over the time of 10s. It can be seen that while not all offsets
in a 256-byte window can be leaked with the same frequency,
all offsets can be leaked. For the victim, we use a de Bruijn
sequence of order 3 on an alphabet of size 26, i.e., B(26,3),
to groom the WC buffer (cf. Section 3.3). We constantly
write this sequence to a dummy location using rep mov. The
victim is running on the sibling logical core.

For the attacker, we always leak 3 bytes at a time by en-
coding every byte into a different array of 256 pages. As it
is possible to compute on the full leaked values in the tran-
sient domain [39, 52], we can leak a 32-bit value, split it, and
encode it to different arrays. The recovered 3-byte value can
then be matched to the de Bruijn sequence used in the victim
application. As the position of every 3-byte value within the
de Bruijn sequence is unique, this method allows us to ana-
lyze the pattern of the leaked values. Notably, we can always
see strides of values which occur often in the leaked data,
followed by strides which only occur rarely. Especially for
the beginning of the buffer, the probability for leaking the
first 32 bytes (p =67 %, n =10000) is significantly higher
than for leaking the second 32 bytes (p =33 %, n =10 000).
We assume that the split of 32 B is due to the 32 B data-bus
size on our test machine (i7-8650U). Hence, to transmit a
WC-buffer entry over the common data bus, both halves of
the entry have to be transferred separately, and Medusa leaks
either the first or second half. Data after the first cache line
shows a different pattern. We can always see 16 B strides of
values that occur often in the leaked data, followed by 16 B
strides, which only occur rarely. Interestingly, this pattern
does neither correlate with the bus size, nor with the size of
the WC buffer. Moreover, the leakage rate increases after

Table 3: A comparison of MDS attacks in various variants and on different targets.

With memory barrier

Without memory barrier

>128-bit data

load store load store load store
(%) RIDL RIDL RIDL (ST) RIDL (ST) - -
<x> - Fallout (ST) - Fallout (ST) - Medusa / Fallout (ST)
& ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad Medusa / ZombieLoad
TAA ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad ZombieLoad
PTE inversion | - Fallout (CL, ST) - Fallout (CL, ST) - Fallout (CL, ST)
Ty ZombieLoad ZombieLoad / Fallout | ZombieLoad ZombieLoad / Fallout | ZombieLoad ZombieLoad / Fallout
(ST) (ST) (ST)
Attack(s) ZombielLoad / ZombieLoad / RIDL / | ZombieLLoad / ZombieLLoad / RIDL | ZombielLoad Medusa / ZombieLoad
RIDL Fallout (ST) RIDL (ST) (ST) / Fallout (ST) / Fallout (ST)

ST Same CPU thread only CL Coffee Lake only

Leaked [%]
[N INoN
T
!

| | N
0 20 40 60
Cache-line offset [B]

Figure 4: The cache-line offsets and how they contribute to
the leakage for Medusa Variant 1.

the first 64 B. At the time of writing, we do not know of any
way to analyze these effects further, and hence, we leave the
investigation of this effect for future work.

4.2 Exploitation Methodology
4.2.1 Variant I: Cache Indexing

We now describe different variants that allow triggering
Medusa. In the first variant of Medusa, we rely on faulting
loads which are bounded within a cache line. Variant I ex-
ploits faulting loads on addresses that point inside a cache line
(cf. Figure 4) to leak values from the WC buffer. The setup is
similar to all Meltdown-type attacks, with a faulting load that
transiently encodes the loaded data into a microarchitectural
element. In contrast to existing attacks, the type of fault is not
important, but the cache-line offset of the faulting address is.
We verified Variant I with both non-canonical and supervisor
addresses. On our test machine, an 17-8650U, the cache-line
offset, i.e., the least-significant 6 bits of the address, has to
be at least 8, which is the maximum size of normal memory
loads. However, the highest leakage rates are for offsets be-
tween 16 and 31. The common data bus has a width of 32
bytes. However, normal loads can only use up to §, and AVX
loads 16 bytes (128 bits). As a consequence, offsets 16 to 31
are rarely used, as only AVX2 (256 bits) uses the full width
of the common data bus. However, as the goal of WC is to
increase the throughput, (implicit) WC also tries to leverage
the entire common data bus. Hence, by using address offsets
that index the upper half of the common data bus, Variant I

<%> Non-canonical Address Fault

@ Non-present Page Fault & Supervisor Protection Fault T Access-bit Assist

leaks stale values of recent WC operations, e.g., rep mov, as
well as AVX2 memory loads.

While at first, Variant I appears to be similar to
MLPDS [24], ZombieLoad [52], or Fallout [10], it has dis-
tinctive properties. First, MLPDS requires either a faulting
load spanning a cache line (64 B) or a faulting vector load
that is larger than 64 bits [24]. For Variant I, neither of these
requirements is necessary. In contrast, Variant I only works
if the load is within one cache line. Loads spanning over two
cache lines do not show data leakage (cf. Figure 4). Second,
Variant I leaks data from the same logical core as well as from
the sibling logical core, which is different from Fallout [10].
The leakage is limited to data that is stored using either rep
mov, rep stos, or AVX2. In contrast to ZombieLoad or Fall-
out, Variant I of Medusa is agnostic to other data passing the
store buffer or fill buffer, as they never use the upper half of
the common data bus.

4.2.2 Variant II: Unaligned Store-to-Load Forwarding

A faulting or assisting load that meets the “Unaligned Store-to-
Load Forwarding” condition (similar to MSBDS) consistently
leaks stale data. This was observed even across hyperthreads.
Note that this is different from MSBDS, as MSBDS does
not work across hyperthreads. Here, we can leak the data
from the WC buffer by creating an unaligned store-to-load
forwarding condition on a faulting or assisting load. Further,
an attacker can control which bytes of the WC buffer to leak
by combining various load sizes and the offset of the small
store. In our experiments, we can control the last 16 bytes of
a WC buffer line by combining a 32-byte read "'ymmX’ and
iterating over various values for the offset of the store.

4.2.3 Variant III: Shadow REP MOV

Variant III of Medusa exploits a microcode assist caused by a
rep mov followed by a dependent faulting load. The rep mov
copies a single dummy byte to a destination address which
causes a fault, e.g., a non-canonical address. A subsequent
load from the destination address leaks data from a stale or
concurrent rep mov. The rep mov can either be on the same

Table 4: rep mov instruction within cryptographic libraries.

Library Version 00 O1 02 03 Os
Botan 2.11.0 12 14 68 *137 188
Openssl 1.1.1c 12 23 29 *34 347
Wolfssl 4.1.0 1 7 *49 72 199
Bearssl 0.6 10 26 45 56 *213
Sodium 1.0.18 312 *12 13 49
Gerypt 1.8.4 5 5 *7 11 168

logical core before running Medusa which leaks stale data
of the previous rep mov. This also works across privilege
boundaries, i.e., the stale rep mov data can also be from the
kernel. Moreover, this attack also works for a concurrent rep
mov on the sibling logical core across privilege boundaries.
As with Variant I, this variant has the property to only leak
data of rep mov, rep stos, and AVX2 memory loads, which
allows a targeted leakage of data used in such constructs. In
contrast to Variant I, this variant is entirely address-agnostic,
which simplifies the recording of the leakage. However, this
increases the complexity of the post-processing, as an attacker

does not have any control over the index of the leaked data.

Hence, as every byte of the victim buffer can be leaked with
a certain probability, the postprocessing has to stitch together
the leaked data, e.g., using the Domino technique [52].

4.3 WC in Real-World Software

We analyzed real-world software to find occurrences of WC.

We looked both for explicit WC, i.e., WC memory defined
through the PAT, as well as for implicit WC in the form of
rep mov and rep stos.

userspace. We first searched for implicit WC, as userspace
applications cannot directly change the memory type of a
page. We analyzed when and how often GCC emits a rep mov
sequence during the compilation of popular cryptographic

libraries, as potential targets that process sensitive information.

As shown in Table 4, if GCC optimizes the application for
code size (-0s), it emits the most rep mov instructions as rep
mov is the smallest possible code sequence that can be used
to copy memory regions. Similarly, rep stos is the smallest
code sequence to initialize memory with a defined value.
We also found the explicit use of WC memory types in the
userspace. Although implementation-specific, both OpenGL

and Vulkan support memory buffers, which are marked as WC.

Memory buffers allocated as write-only buffers are likely to
be allocated as WC memory by the driver.

Linux Kernel. The Linux kernel also relies on rep mov to
copy data. In contrast to user-space applications, the usage
of rep mov is not to optimize the kernel binary for size. It is
used independently of the used compilation flags, as the kernel

generally does not use floating-point or SIMD operations.

Hence, rep mov is the most efficient way to copy data. As
there is a small startup penalty when using rep mov, only

strings with a minimum length of 64 B are copied using rep
mov. For shorter strings, or if fast-string operations are not
supported, the kernel falls back to a simple copy loop. We
reverse-engineered the kernel binary for kernel 5.0.0 shipped
with Ubuntu to analyze it for the usage of rep mov. We found
517 usages of rep mov in 374 functions in the binary. While
many of the functions are only used once in the setup phase
of the kernel (e.g., to copy and decompress parts of the kernel,
setup EFI and several devices, initialize the architecture, or
apply microcode updates), some of them are used regularly.
These functions include, amongst others, memcpy, memmove,
copy_from_user, and copy_to_user.

4.4 Performance Evaluation

We evaluated the performance of Medusa based on our proof-
of-concept implementations.

Environments. We evaluated all variants of Medusa on our
Intel CPUs mentioned before. All environments run Ubuntu
with a recent 5.0 kernel version. For CPUs vulnerable to
Meltdown, the KPTI software mitigation is enabled. We suc-
cessfully used all variants in all tested environments.

Performance. To evaluate the performance, we evaluate the
leakage rate as well as the false-positive rate when using
Medusa on a colluding victim. This provides an upper bound
for the leakage rates we can expect when using Medusa in
a side-channel attack where the victim is not colluding. We
started a victim application on one logical core, which leaks
a known value. On the sibling hyperthread, we ran Medusa
repeatedly for 2's and recorded the correctly and incorrectly
leaked values. With variant I, we achieve an average leakage
rate of 0.19kB /s (n = 100, 6z = 0.0023), with a false-positive
rate of 47.7 % (n = 100, 6z = 0.002). For variant II, the leakage
rate is on average 36.23 kB /s (n = 100, 65 = 0.15) with a false-
positive rate of 0.559 % (n = 100, 6z = 0.0005). Finally, with
variant III, we achieve an average leakage rate of 0.13kB/s
(n =100, oz =0.0016) and a false-positive rate of 3.91 % (n
=100, 6z = 0.0017).

These numbers are based on our unoptimized proof-of-
concept implementation. Hence, these numbers cannot be
taken as upper bounds for the leakage rate (and false-positive
rate). As we discussed in Section 3.4, these leakages can be
improved by syntehsizing the implementation.

4.5 Cross-VM Covert Channel

To evaluate the leakage rate of Medusa in the cross-VM sce-
nario, we evaluate the performance of a cross-VM covert
channel. While the covert channel can also be mounted be-
tween user applications, we focus on the cross-VM case as
it is the most restricted scenario. For our setup, we use two
co-located VMs running on an Intel Core 17-8650U running
Ubuntu 18.04.3. Both VMs are running Ubuntu 18.04.3.

Sender. For the sender, we use a rep mov instruction, which
continuously copies a 256-byte buffer containing the encoded
data. We redundantly encode every 32-bit data packet by re-
peating it 32 times inside the buffer. Every 32-bit data packet
consists of 8-bit data, 8-bit checksum, a constant prefix, and a
sequence number. The data-packet format resembles the setup
from Schwarz et al. [52] to make the results comparable.

Receiver. The receiving application leverages Medusa variant
III to leak victim data. Although the redundancy in the leaked
data reduces the speed, it increases the robustness, as any part
of the leaked buffer contains the data. Moreover, due to the
checksum, which we can already verify during the transient
execution [52], we do not receive any unrelated data, making
the receiver robust against any system noise.

Results. We observed an average transmission rate of
14.3B/s (n = 1000, oz = 0.56) in the cross-VM scenario.
In all cases, the transmission was error-free. Due to the over-
head of the encoding scheme, the performance is significantly
slower than the raw performance of Medusa variant III (cf.
Section 4.4). We expect that more sophisticated encoding
schemes, including error correction [43], can significantly
improve the performance of the covert channel.

5 Attack Case Studies

In this section, we demonstrate the practicality of Medusa by
extracting an RSA key from OpenSSL and by leaking kernel
data transfers.

5.1 Leaking RSA Keys from OpenSSL

We use Medusa to demonstrate an attack on the latest
OpenSSL that successfully recovers an RSA key. We focus
on OpenSSL 1.1.1c, as it is both widely used, and it supports
countermeasures against traditional side-channel attacks, mak-
ing it a robust target. Note that while we quantified the oc-
currence of rep mov in popular cryptographic libraries (cf.
Section 4.3), we did not analyze further for potential security-
critical use cases. However, we expect that they are vulnerable
to similar attacks as well. The victim is a simple application
that leverages OpenSSL to load an RSA key from a file and
signs some data using this key. This application reflects real-
world command line or server applications that are spawned
upon user request to perform a cryptographic task, e.g., SSH
client/server or VPN client/server. In our attack, we can start
the application arbitrarily, but we do not control any inputs to
the victim application. This scenario, i.e., triggering the victim
application, is in line with previous research [10, 52, 58, 63].

Every time the application is started, it has to load the RSA
private key from the key file. The key file is in the PEM
format, which is a base64 encoded representation of the key
parameters. Hence, to use the actual key parameters, OpenSSL
first decodes the key data using its internal base64 decoder.

20 I I false priexp(8)
Iio liowo
priexp32) [M as0)
10
0 I T T
1,000 2,000 3,000 4,000

Figure 5: Histogram and score of most likely 6-byte leak-
ages through AVX256-P3 with 10K observations collected in
100 runs (labeled by starting bytes). Six byte block leakages
at q(2) (g starting at byte 2), priexp (8) and priexp (32)
(RSA exponent d starting at bytes and 8 and 32) and dp (7)
(leak from d),, = d mod p — 1 starting at byte 7) can be easily
identified based on the observation frequencies.

When compiling the library to optimize it for size, the base 64
decoder uses rep mov for loading the base64-encoded data.
We attack exactly this rep mov sequence using Medusa to
leak the RSA parameters, which are then used to recover the
private key.

OpenSSL RSA keys in PEM format include both the de-
fault prime and exponents of the RSA alongside the precom-
puted parameters for the Chinese Remainder Theorem (CRT).
This includes modulus N, public exponent e, private exponent
d, prime numbers p and g, d mod (p—1),d mod (¢g— 1) and
the coefficient g~' mod p. The size of the copy operation
during the execution of the rep mov instruction depends on
the key size. For example, for a 1024-bit RSA key, there are
5%64 42 128 = 576 bytes of key material to be copied. As
the key material also includes several bytes for the ASN.1
PEM metadata, the total amount of copied raw data is ap-
proximately 600 bytes. As the data is base 64 encoded, which
always encodes 3 raw bytes as 4 bytes, the actual amount of
copied data is approximately 800 bytes. Hence, depending on
the size of the copy operation and the used attack, different
parts of this key may be leaked more often (cf. Figure 3).

We create a template based on the frequency of the leakage
of different parts of the RSA key parameters. In this attack, we
use variant IT of Medusa to leak the data with the unaligned
store forwarding, which allows us to leak the entire content of
the common data bus. We also use the domino technique [52]
combined with the frequency of each observed value to build
a frequency template of recovered key parts. As discussed in
Section 4.1, the probability of leaking specific data depends
on the offset of the leaked data transmitted over the common
data bus. Hence, depending on which part of the data we want
to leak, we have to repeat Medusa between 10 000 and 20 000
times per key byte. In total, we run this experiment 100 times.
Our online phase of the attack takes at most 7 minutes on the
core 19-9900K CPU.

After stitching the bytes of every 8-byte block of base64-
encoded data using the Domino technique [52], we can create

20 I ¥ priep2 false
Buway 0B pmewss
priexp38) || W priexp(14)
10 - q(56) p(s1)
q(8) q(32)
B 0 priexocii0)
0 \‘ \ T \

I
0 1,000 2,000 3,000 4,000 5,000 6,000

Figure 6: Histogram and score of most likely 6-byte leakages
through AVX256-P4 (similar experiment as Figure 5). Block
leakages at g (8), q(32),q(56) (g starting at bytes 8, 32, 56),
priexp(14), priexp(39) and priexp(86), dp(13) (leak
from d,, starting at byte 13), p (51) (p starting at byte 51) can
be identified based on the block frequencies.

a template based on the frequency of an observed block that
tells us which parts of the key material are leaked. Note that
each 8-bytes block of base64 encoded key data holds 6-bytes
of valuable raw key material. Figure 5 and Figure 6 show
the frequency of each section leaked through different part
of an AVX-256 register. Note that in the top histogram we
see consistent strong leakage of 6-byte blocks in priexp (the
RSA key d), starting at byte locations 14,38,86, and 110 as
well as strong leakage in ¢ starting at locations 8,32, 56.

5.1.1 Recovering full RSA keys using Lattice Attacks

These leakages give us only partial information on the
RSA secrets p, g, d (privexp in the OpenSSL implemen-
tation), and d mod (p — 1), d mod (¢ — 1) and the coefficient
g~ ! mod p are far from yielding the full secrets. However,
there has been significant progress in recovering keys from
RSA instantiated with small or partially exposed messages,
or decryption keys. Coppersmith introduced a technique for
finding small roots of polynomial equations is to reduce the
problem of finding roots of a polynomial f(x) over Z, [13],
which may be used to recover RSA factors, if the least or
most-significant half of the bits of p or g are known. Boneh,
Durfee, and Frankel proposed a technique to recover the RSA
secret and moduli p and g if a quarter of the least or most
significant bits of d are leaked, and when e is small enough
to be reachable via exhaustive testing [8]. Later Boneh and
Durfee [7] presented a technique that recovers RSA fac-
tors with d < N%2%2 without any conditions on e. For an
overview, see May [44], and the more recent Takayasu and
Kunihiro et al. [54]. Here we focus on two attacks which fit
our leakage profile:

Coppersmith. We use the Coppersmith attack to recover the
RSA factor g. We combine partial leakages of g at bytes 8§,
56 (from P4), and 2, 50 (from P3) and 0, 61, 12, 44 (from P2)
to obtain a leakage in g: 18-bytes LSB (bytes 0-17) and 20-
bytes MSB (bytes 44-63). This gives us a combined leakage

of more than a quarter (38/128 bytes) of N for the 1024-bit
RSA. Coppersmith’s attack is slightly adjusted to handle the
LSB/MSB split in the leaked data. We apply Coppersmith’s
lattice attack to recover small solutions to

F(x) = x+ (qus2**® + qrsp) (1/2'% mod N) .

We used SageMath v8.4 with NTL for LLL to implement
the attack which takes a few second to successfully recover a
root xo and the RSA factor: g = qrsp2***8 +x02'33 + ¢;55 .
We attached scores by counting how many times the partial
leakages could be stitched together into an 8-byte block over
20000 samples. The scores serve as a template which we use
to classify observations before trial by Coppersmith.

ymmX-P2 ymmX-P3 ymmX-P4
Block q(i) | 44 12 61 0 2 50 8 56
Avg. Score | 82 288 304 355 | 377 4157 | 401 3651
Spurious | 5 18 16 14 0 1 0 0

To obtain the statistics for the templates, we needed 20 000.
With more spurious blocks (selected as to have a score within
420 % of the target block), we need to try more combinations.
On average, we need 58 000 trials and each triage of this
lattice attack takes 25 seconds. As a result, in the offline
phase of the attack, we use 400 CPU hours to perform these
trials which is achieved in a day on our 16-core desktop CPU.

Boneh, Durfee, Frankel (BDF). While the Coppersmith and
partial information of the g was sufficient to recover the RSA
key, we discuss an alternative attack for potential other tem-
plates. The BDF attack [8] recovers RSA factors given the
LSB quarter of the secret exponent d bits when e is small
enough to be exhaustively tested. The attack iterates the fol-
lowing steps for each k € [1,e] until a solution is found:

1. Form a polynomial equation:

f(x) =k®+ (edo—k(N+1)—1)x—kN =0 (mod 2"/4) .
Here n = log,(N) and dy = d (mod 2"/*).

2. Find solutions to f(x). Due to the special structure of
the modulus, the equation is efficiently solved to recover
at most 2'*! solutions, where ¢ is the largest power of 2
that divides k. For correctly chosen k the solution of f(x)
yields p (or g) modulo 2n/4,

3. Check each recovered solution by taking it as the (candi-
date) LSB of p or g and running Coppersmith to see if we
obtain the RSA factors.

The algorithm runtime is O(elog(e)) Coppersmith iterations.

A Small but Effective Optimization. Our target e = 2'° + 1
is exhaustible. However, we can do much better since we have
some LSB bytes of p and g. We can use these bytes to check
the recovered candidate LSBs of p or ¢ and take a shortcut
omitting costly Step 3 if there is no match. With a few bytes
of leakage, we can reduce the complexity from O(elog(e))
to only O(log(e)) Coppersmith evaluations.

For the 1024-bit case, we exploit the leakage observed
on d (priexp) with 6-byte leakages starting at bytes:
2,8,14,16,26 which gives us 27 LSB of the required 32 bytes

of d. We are missing 5 bytes which are now exhaustible. The
attack requires about 180 trials to cope with the spurious
blocks.

ymmX-P2 ymmX-P3 ymmX-P4
Block d (i) 2 16 26 8 14
Avg. Score | 116 104 138 739 724
Spurious 9 8 0 1 0

Scaling the Attack to 2048-bit RSA. The 1024-bit RSA at-
tack described above recovered the secret key using a simple
univariate formulation via Coppersmith’s technique since a
quarter of contiguous secret bits were available. For a 2048-
bit key, this is more challenging, since we can not obtain 64
contiguous bytes of g, p or d through the leakage channel.
However, we have observed more leakage from the higher
blocks of d and non-contiguous blocks of p and g. The main
idea is to form multivariate expressions of the form f;(x,y)
using the known parts of d, p, and ¢ where x and y represent
the unknown parts of p and g. Then we apply lattice reduction
to reduce the size of the coefficients. A resultant computation
applied on the reduced multivariate polynomials yields a uni-
variate polynomial, whose solution yields the unknown parts
of p or q. The success probability for the attack depends on the
amount of leakage and the precise lattice formulation. While
plausible, this approach is beyond the scope of this paper. For
further information on multivariate analysis see [6, 15].

5.2 Leaking Kernel Data Transfers

As discussed in Section 4.3, the Linux kernel uses rep mov
for the internal data-transfer functions, including memcpy,
memmove, copy_from_user, and copy_to_user.

Root Password Hash. As described by Van Schaik et al. [58],
the unprivileged passwd -S command reads the contents of
the user-inaccessible /etc/shadow file containing the pass-
word hashes of local users. They managed to leak 21 B in 24 h
using the RIDL attack. Schwarz [49] showed that the same
attack is more efficient with ZombieLoad by leaking 16 B in
1.25 min. With TAA [52], the entire hash can even be leaked
within seconds [14].

We used Medusa to reproduced this attack. While we can
also leak the root password hash with Medusa, the leakage rate
depends on the part of the password hash that is leaked. Due
to the leakage pattern of Medusa, we always have blocks of
the hash that can be leaked within 1 s while for other blocks, it
takes up to 1 h, which is comparable to the proofs-of-concept
shown for ZombieL.oad and RIDL.

File I/0O. Generally, Medusa can leak any data transfer be-
tween the kernel and the userspace, such as the contents of
files when reading or writing them. We verified that we can
leak the content by using a file with known contents. We
continuously read the file from one application running on
one hyperthread, while running Medusa in a different user-
space application on the sibling hyperthread. As every file

read is handled by the kernel via the read syscall, the entire
file content is copied from the kernel to the user-space victim
application. On average, we leaked 12.3 B/s of correct values
from the file.

Another case of data transfer is swapping. If application
pages are copied to or from the swap device, the data can
potentially also be leaked using Medusa.

6 Countermeasures

As Medusa is a variant of ZombieLoad, the same countermea-
sures are applicable for both Medusa and ZombieLoad.

Hyperthreading. While Intel claims that hyperthreading can
be enabled if group scheduling is implemented [24], we are
not aware of any commodity operating system implement-
ing group scheduling. Hence, only disabling hyperthreading
would entirely prevent cross-hyperthread attacks.

Flushing Buffers. To prevent the exploitation of MDS at-
tacks, Intel released a microcode update that retrofits the VERW
instruction with the side effect that it clears the store buffer,
fill buffer, and load ports. While this prevents RIDL [58],
Schwarz et al. [52] have shown that ZombieLoad can cir-
cumvent this mitigation. The only effective solution is to
additionally flush the L1 data cache as well. However, flush-
ing the store buffer, fill buffer, load ports, and L1 data cache
on every privilege-level switch, e.g., context switch, incurs a
non-negligible performance overhead.

New CPUs. Although new CPUs are MDS resistant, there
are still variants of ZombieLL.oad which work on these CPUs
by leveraging microcode assists caused by Intel TSX. Hence,
even on MDS resistant CPUs, Intel TSX has to be disabled to
ensure that no ZombieLoad variant, including Medusa, can
leak any data. While Intel TSX cannot be disabled directly,
a workaround is to ensure that all TSX transactions abort
immediately by setting the MSR_TSX_FORCE_ABORT model-
specific register. As a consequence, Intel TSX cannot be used
for fault suppression any more.

7 Discussion

Other CPU Vendors. In this paper, we mainly focussed on
Intel CPUs. While Medusa is a vulnerability we only dis-
covered on Intel CPUs, the general approach of Transynther
applies to different CPUs as well. We also used Transynther
on AMD (cf. Section 3.4.2), showing that AMD also for-
wards data after certain exceptions, which is a requirement
for Meltdown-type attacks. However, we could not find any
variant on AMD that leaks data across a security boundary. Fu-
ture work has to manually investigate whether the exception
bypasses on AMD can lead to security vulnerabilities.
Transynther can also be applied to other microarchitectures,
such as ARM or RISC-V. Although the approach is the same,

porting Transynther to a different instruction set requires a
new backend that generates assembly code for the targeted
architecture. As our tool is open source, we encourage re-
searchers to port Transynther to different architectures and
analyze whether they suffer from similar vulnerabilities.

Non-Meltdown-type Vulnerabilities. The approach of Tran-
synther is designed to automatically find Meltdown-type vul-
nerabilities. Other transient-execution attacks, such as Spectre-
type attacks, are not in scope for Transynther. The reason is
that Spectre attacks exploit the intentional, well-understood
behavior of branch predictors. Every branch predictor can
likely be abused for Spectre attacks [11], and the types of
branch predictors are usually documented for every microar-
chitecture. Hence, we do not expect that Transynther would
detect any new Spectre variants even when it is adapted for
finding such attacks.

Meltdown-type attacks, however, exploit CPU vulnerabili-
ties that can be triggered in multiple different ways. Hence,
as this paper has also shown with Medusa, Transynther can
discover new variants, and can potentially also help to find
Meltdown-type attacks on different platforms.

In related work, Xiao et al. [62] analyzes both Meltdown-
and Spectre-type vulnerabilities in terms of speculation win-
dow, triggers, and different covert channels. They also rely
on templates to build code that is analyzed for vulnerabilities.

Starting Set Dependency. As most fuzzers, Transynther re-
lies on a starting set for creating more test cases. The differ-
ence to software fuzzers is that Transynther does not have
fine-grained feedback, such as e.g., code coverage. While tra-
ditional fuzzers can create test cases based on mutation and
feedback, Transynther is mostly limited to random mutations.
Hence, the better the starting set, i.e., the more different vari-
ants are covered, the better the efficiency of Transynther. As
with any fuzzer, there is no guarantee that Transynther finds
all possible vulnerabilities.

Fuzzing-based Approaches. Fuzzing is a well-established
technique for finding vulnerabilities across trust boundaries [9,
12, 16, 32, 33, 36, 41, 45, 51, 59, 60]. These approaches can
usually rely on a well-defined interface, e.g., system calls.

SpecFuzz investigated the use of fuzzing for finding Spectre
gadgets [47]. They apply fuzzing techniques to find Spectre-
PHT (also known as Spectre Variant 1) gadgets in existing
code. However, they do not try to find new attack variants. To
the best of our knowledge, with Transynther, we are the first to
show that fuzzing can be applied to detect microarchitectural
vulnerabilities.

8 Conclusion

In this work, we performed an in-depth analysis of MDS at-
tacks. We introduced a fuzzing-based analysis tool, named
Transynther, which mutates the basic block of existing vari-
ants of Meltdown attacks to generate new subvariants. We

analyzed a number of CPUs using Transynther to better un-
derstand variants of these attacks and found new variants of
MDS that only target fast string copies. Based on our findings,
we proposed a new attack named Medusa, which leaks data
from WC memory operations. Since Medusa only attacks
specific operations, it is more targeted. To demonstrate the
effectiveness of Medusa, we ran several case studies: We re-
covered full RSA keys from OpenSSL by pooling leakages
observed during key decoding, amplified using lattice tech-
niques. Further, using Medusa we demonstrated how one can
recover information from kernel data transfers, or leak the
content of files.

Acknowledgments

We would like to thank our reviewers and especially our shep-
herd, Vasileios Kemerlis, for their suggestions that helped im-
proving the paper. This work was supported by the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402). It was also supported by the Austrian Research
Promotion Agency (FFG) via the K-project DeSSnet, which
is funded in the context of COMET - Competence Centers
for Excellent Technologies by BMVIT, BMWFW, Styria and
Carinthia. Moghimi and Sunar were supported by the Na-
tional Science Foundation under grants no. CNS-1814406.
Additional funding was provided by a generous gift from Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References

[1] Advanced Micro Devices. Software Optimization Guide for AMD
Family 17h Processors, 2017.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida Garcia, and Nicola Tuveri. Port Contention for Fun and
Profit. In IEEE Symposium on Security and Privacy (S&P), 2018.

[3] AMD. Speculation Behavior in AMD Micro-Architectures, May 2019.

[4] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier.
A Taint Based Approach for Smart Fuzzing. In IEEE International
Conference on Software Testing, Verification and Validation, 2012.

[5] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom. "Ooh
Aah... Just a Little Bit": A Small Amount of Side Channel Can Go a
Long Way. In International Conference on Cryptographic Hardware
and Embedded Systems, 2014.

[6] Johannes Blomer and Alexander May. New Partial Key Exposure
Attacks on RSA. In International Cryptology Conference (CRYPTO),
2003.

[7]1 Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with Private Key
d Less than N/sup 0.292. IEEE transactions on Information Theory,
2000.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

Dan Boneh, Glenn Durfee, and Yair Frankel. An Attack on RSA Given
a Small Fraction of the Private Key Bits. In International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT), 1998.

Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and
Dawson R Engler. EXE: Automatically Generating Inputs of Death.
ACM Transactions on Information and System Security, 2008.

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. In ACM SIGSAC Conference on
Computer and Communications Security, 2019.

Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A Systematic Evaluation of Transient Execution
Attacks and Defenses. In USENIX Security Symposium, 2019.

George J Carrette. CRASHME: Random Input Testing, 1996.

Don Coppersmith. Small Solutions to Polynomial Equations, and Low
Exponent RSA Vulnerabilities. Journal of Cryptology, 1997.

Finn de Ridder.
4DQAcCfg3b8, 2020.

https://www.youtube.com/watch?v=

Matthias Ernst, Ellen Jochemsz, Alexander May, and Benne De Weger.
Partial Key Exposure Attacks on RSA Up to Full Size Exponents. In
International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), 2005.

Amaury Gauthier, Clément Mazin, Julien Iguchi-Cartigny, and Jean-
Louis Lanet. Enhancing fuzzing technique for OKL4 syscalls testing. In
Sixth International Conference on Availability, Reliability and Security
(ARES), 2011.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks. In USENIX Security Symposium, 2018.

Daniel Gruss, Felix Schuster, Olya Ohrimenko, Istvan Haller, Julian
Lettner, and Manuel Costa. Strong and Efficient Cache Side-Channel
Protection using Hardware Transactional Memory. In USENIX Security
Symposium, 2017.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches. In
USENIX Security Symposium, 2015.

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games —
Bringing Access-Based Cache Attacks on AES to Practice. In /[EEE
Symposium on Security and Privacy (S&P), 2011.

Jann Horn. speculative execution, variant 4: speculative store by-
pass. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528, 2018.

Intel. Write Combining Memory Implementation Guidelines, 1998.

Intel. Copying Accelerated Video Decode Frame Buffers, 2015.

Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sampling,
May 2019.

Intel. Deep Dive: Intel Transactional Synchronization Extensions (Intel
TSX) Asynchronous Abort, November 2019.

Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
2019.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide, 2019.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor
Cache Attacks. In ACM Asia Conference on Computer and Communi-
cations Security, 2016.

Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait a minute! A fast, Cross-VM attack on AES. In Interna-
tional Workshop on Recent Advances in Intrusion Detection, 2014.

Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gul-
mezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Speculative
Load Hazards Boost Rowhammer and Cache Attacks. In USENIX
Security Symposium, 2019.

Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel Ad-
dress Space Layout Randomization with Intel TSX. In ACM SIGSAC
Conference on Computer and Communications Security, 2016.

Moritz Jodeit and Martin Johns. USB Device Drivers: A Stepping
Stone into Your Kernel. In IEEE European Conference on Computer
Network Defense, 2010.

Dave Jones. Trinity: A system call fuzzer. In 13th Ottawa Linux
Symposium, 2011.

Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. arXiv:1807.03757, 2018.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In /EEE Symposium on Security and
Privacy (S&P), 2019.

Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek,
and Ted Marz. Comparing operating systems using robustness bench-
marks. In IEEE Symposium on Reliable Distributed Systems, 1997.

Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song,
and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks using
the Return Stack Buffer. In USENIX Workshop on Offensive Technolo-
gies, 2018.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices.
In USENIX Security Symposium, 2016.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security Symposium, 2018.

G. Maisuradze and C. Rossow. ret2spec: Speculative Execution Using
Return Stack Buffers. In ACM SIGSAC Conference on Computer and
Communications Security, 2018.

Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. esting System Virtual Machines. In International
Symposium on Software Testing and Analysis, 2010.

Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. Testing cpu emulators. In International Symposium
on Software Testing and Analysis, 2009.

Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Romer.
Hello from the Other Side: SSH over Robust Cache Covert Channels
in the Cloud. In Network & Distributed System Security Symposium,
2017.

https://www.youtube.com/watch?v=4DQAcCfg3b8
https://www.youtube.com/watch?v=4DQAcCfg3b8
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56

[57]

[58]

[59]

[60]

Alexander May. New RSA Vulnerabilities Using Lattice Reduction
Methods. PhD thesis, University of Paderborn Paderborn, 2003.

Manuel Mendonga and Nuno Neves. Fuzzing Wi-Fi Drivers to Locate
Security Vulnerabilities. In IEEE European Dependable Computing
Conference.

Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk
Sunar. MemJam: A False Dependency Attack against Constant-time
Crypto Implementations. In International Journal of Parallel Program-
ming, 2019.

Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. SpecFuzz: Bringing Spectre-type Vulnerabilities to the Surface.
arXiv:1905.10311, 2019.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In Cryptographers’ track at the
RSA conference, 2006.

Michael Schwarz. https://twitter.com/misc0110/status/
1129305720770498561, May 2019.

Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs.
arXiv:1905.05725, 2019.

Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs using
Modern CPU Features. In ACM Asia Conference on Computer and
Communications Security, 2018.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In ACM SIGSAC Conference on
Computer and Communications Security, 2019.

Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU Regis-
ter State using Microarchitectural Side-Channels. arXiv:1806.07480,
2018.

Atsushi Takayasu and Noboru Kunihiro. Partial Key Exposure At-
tacks on RSA: Achieving the Boneh-Durfee Bound. In International
Conference on Selected Areas in Cryptography, 2014.

Bret L Toll, John Alan Miller, and Michael A Fetterman. Method
and Apparatus for Representation of an Address in Canonical Form,
September 5 2006. US Patent 7,103,751.

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Meltdown-
Prime and SpectrePrime: Automatically-Synthesized Attacks Exploit-
ing Invalidation-Based Coherence Protocols. arXiv:1802.03802, 2018.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security Symposium, 2018.

Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue In-flight Data Load. In IEEE Symposium on Security
and Privacy (S&P), 2019.

Dmitry Vyukov. syzkaller - linux syscall fuzzer, 2016.
Vincent M Weaver and Dave Jones. perf fuzzer: Targeted Fuzzing of

the perf event open() System Call. Technical report, Technical Report,
University of Maine, 2015.

[61] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F.
Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Virtual
Memory Abstraction with Transient Out-of-Order Execution, 2018.

[62] Yuan Xiao, Yingian Zhang, and Radu Teodorescu. SPEECHMINER:
A Framework for Investigating and Measuring Speculative Execution
Vulnerabilities. In Network & Distributed System Security Symposium,
2020.

[63] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security
Symposium (USENIX) Security 14), 2014.

[64] Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM Side Channels and Their Use to ExtractPrivate Keys. In
ACM conference on Computer and communications security, 2012.

A WC Buffer Size

In this experiment, we determine the size of an entry in
the WC buffer. The idea is to detect that there are no
available WC-buffer entries anymore by relying on the
L1D_PEND_MISS.FB_FULL performance counter. We execute
an increasing number of non-temporal linear store instructions
with a defined stride size. Non-temporal stores ensure that the
CPU uses WC for the stores. At the point where the stride
size exceeds the size of a WC-buffer entry, a new WC-buffer
entry has to be allocated for every store. Hence, if we see
that the WC buffer becomes a bottleneck, and the number of
executed stores matches the number of fill-buffer entries, we
know that the stride size equals the WC-buffer-entry size.
Figure 7 shows the results of this experiment. Only at
a stride size of 64 bytes and for more than 12 stores, the
performance counter reports unavailability of the WC buffers.
For smaller stride sizes, the stores can be combined in the
buffers such that not every store requires its buffer entry.

T
o U p— 1-byte stride
= é 40 |- —— 8-byte stride
=z ol 32-byte stride
—— 64-byte stride
0 | L
0 5 10 15 20

Stores

Figure 7: Cycles no fill-buffer entry is available. As Skylake
has 12 fill-buffer entries [52] usable as WC-buffer entries [23],
one has to be 64 bytes.

B Performance Counters

Figure 8 shows the heatmap for the correlation between the
number of leaked bytes and different performance counter
events, related to various variants of Meltdown attacks.

https://twitter.com/misc0110/status/1129305720770498561
https://twitter.com/misc0110/status/1129305720770498561

zombieload-v3-victim-repmov.perf.csv
zombieload-v3-victim-fr-nofence.perf.csv
zombieload-v3-victim-fr-mfence.perf.csv
zombieload-v2-taa-victim-repmov.perf.csv
zombieload-v2-taa-victim-fr-nofence.perf.csv
zombieload-v2-taa-victim-fr-mfence.perf.csv
zombieload-v1-victim-repmov.perf.csv

zombieload-v 1-victim-fr-nofence.perf.csv
zombieload-v1-victim-fr-mfence.perf.csv
medusa-v3-shadowREPMOV-victim-repmov.perf.csv

ridl-victim-fr-nofence.perf.csv
ridl-victim-fr-mfence.perf.csv

ridl-victim-repmov.perf.csv
+ medusa-v3-shadowREPMOV-fh-victim-repmov.perf.csv

+ medusa-v3-shadowREPMOV-victim-fr-nofence.perf.csv
I medusa-v3-shadowREPMOV-victim-fr-mfence.perf.csv

+ medusa-v2-unalignedSTL-victim-nofence.perf.csv

+ medusa-v2-unalignedSTL-victim-mfence.perf.csv

medusa-v2-unalignedSTL-fh-victim-repmov.perf.csv
medusa-v1-addresscan-victim-repmov.perf.csv

I medusa-v2-unalignedSTL-victim-repmov.perf.csv

dtlb_load_misses.miss_causes_a_walk

dtlb_store_misses.miss_causes_a_walk
frontend_retired.dsb_miss
frontend_retired.11i_miss |
frontend_retired.12_miss
Tld.replacement —
11d_pend_miss.fb_full -
11d_pend_miss.pending |
11d_pend_miss.pending_cycles |
1 1d_pena_mlss.pendln§_cycl—es__an B
. 12_lines_in.all
12_lines_out.non_silent
~ 12_Tines_out.silent
12_lines_out.useless_hwp:
12_lines_out.useless_pref
2 rgsts.all_code_rd 4
12_rgsts.all_demand_data_rd |
2 _rqgsts.all_demand_miss |
12_rgsts.all_demand_references —
12_rqgsts.all_pf |
12_rgsts.all_rfo 4
12_rgsts.code_rd_hit
12_rgsts.code_rd_miss
12_rgsts.demand_data_rd_hit
12_rqsts.demand_data_rd_miss —
12_rqgsts.miss —
12_r?sts. f_hit |
12_rqgsts.pf_miss |
12_rgsts.references |
12_rgsts.rfo_hit
12_rqgsts.rfo_miss —
12_trans.12_wb
longest_lat_cache.miss |
longest_Tat_cache.reference
machine_clears.count
machine_clears.smc |
mem_inst_retired.all_loads —
mem_inst_retired.all_stores |
mem_inst_retired.lock_loads -
mem_inst_retired.split_loads —
mem_inst_retired.split_stores |
mem_load_13_hit_retired.xsnp_hit
mem_Joad_I3_hit_retired.xsnp_hitm -
mem_load_13 "hit_retired.xsnp_none -|
mem_load_retired.fb_hit
mem_load_retired.11_hit o
mem_load_retired.11_miss |
mem_load_retired.I2_hit
mem_load_retired.I2_miss |
mem_load_retired.[3_hit o
mem_load_retired.]3_miss |
other_assists.any |
resource_stalls.any -
. resource_stalls.sb -
rob_misc_events.pause_inst —
tlb_flush.stlb_any —
tx_mem.abort_conflict

medusa-v1-addresscan-victim-fr-nofence.perf.csv

medusa-v1-addresscan-victim-fr-mfence.perf.csv
medusa-v1-addresscan-th-victim-repmov.perf.csv

FOEN

il II-I

IIII

Figure 8: Heatmap of performance counters

	Introduction
	Background
	Superscalar Memory Architecture
	Write Combining
	Advanced CPU Features
	Microarchitectural Attacks

	Automatically Exploring Meltdown Attacks
	Synthetisation Phase
	Evaluation Phase
	Classification Phase
	Transynther Results
	Intel
	AMD

	Meltdown Root Cause Generalisation

	Medusa: Pre-filtering Data
	Leakage Analysis
	Leakage Source
	Leakage Pattern

	Exploitation Methodology
	Variant I: Cache Indexing
	Variant II: Unaligned Store-to-Load Forwarding
	Variant III: Shadow REPMOV

	WC in Real-World Software
	Performance Evaluation
	Cross-VM Covert Channel

	Attack Case Studies
	Leaking RSA Keys from OpenSSL
	Recovering full RSA keys using Lattice Attacks

	Leaking Kernel Data Transfers

	Countermeasures
	Discussion
	Conclusion
	WC Buffer Size
	Performance Counters

