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Abstract
Cache attacks exploit memory access patterns of cryptographic implementations.
Constant-time implementation techniques have become an indispensable tool in
fighting cache timing attacks. These techniques engineer the memory accesses of
cryptographic operations to follow a uniform key independent pattern. However, the
constant-time behavior is dependent on the underlying architecture, which can be
highly complex and often incorporates unpublished features. The CacheBleed attack
targets cache bank conflicts and thereby invalidates the assumption that microarchitec-
tural side-channel adversaries can only observe memory with cache line granularity.
In this work, we propose MemJam, which utilizes 4K Aliasing to establish a side-
channel attack that exploits false dependency of memory read-after-write events and
provides a high quality intra cache line timing channel. As a proof of concept, we
demonstrate thefirst key recovery attacks on constant-time implementations of all sym-
metric block ciphers supported in the current intel integrated performance primitives
(Intel IPP) cryptographic library: triple DES, AES and SM4. Further, we demonstrate
the first intra cache level timing attack on SGX by reproducing the AES key recovery
results on an enclave that performs encryption using the aforementioned constant-time
implementation of AES. Our results show that we can not only use this side channel
to efficiently attack memory dependent cryptographic operations but also to bypass
proposed protections. Compared to CacheBleed, which is limited to older processor
generations, MemJam is the first intra cache level attack applicable to all major Intel
processors including the latest generations and also applies to the SGX extension.
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1 Introduction

In cryptographic implementations, timing channels can be introduced by key depen-
dent operations,which can be exploited by local or remote adversaries [18,58].Modern
microarchitectures are complex and support various shared resources, and the oper-
ating system (OS) maximizes the resource sharing among concurrent tasks [52,63].
From a security standpoint, concurrent tasks with different permissions share the same
hardware resources, and these resources can expose exploitable timing channels. A
typical model for exploiting microarchitectural timing channels is for a spy process to
cause resource contention with a victim process and to measure the timing of its own
or of the victim operations [2,45,62,67]. The observed timing behavior give adver-
saries strong evidence on the victim’s resource usage pattern, thus they leak critical
runtime data. Among the shared resources, attacks on cache have received significant
attention, and their practicality has been demonstrated in scenarios such as cloud com-
puting [31,36,45,62,76,79]. A distinguishable feature of cache attacks is the ability
to track memory accesses with high temporal and spatial resolution. Thus, they excel
at exploiting cryptographic implementations with secret dependent memory accesses
[11,35,58,68]. Examples of such vulnerable implementations include using S-Box
tables [71], and efficient implementations of modular exponentiation and scalar mul-
tiplication [34,48].

The weakness of key dependent cache activities has motivated researchers and
practitioners to protect cryptographic implementations against cache attacks [15,67].
The simplest approach is to minimize the memory footprint of lookup tables. Using
a single 8-Bit S-Box in the advanced encryption standard (AES) rather than T-Tables
makes cache attacks on AES inefficient in a noisy environment, since the adversary
can only distinguish accesses between 4 different cache lines. Combining small tables
with cache state normalization, i.e., loading all table entries into cache before each
operation, defeats cache attacks in asynchronous mode, where the adversary is only
able to perform one observation per operation [59]. More advanced side channels such
as exploitation of the thread scheduler [33], cache attack on interrupted execution of
Intel Software Guard eXtension (SGX) [54], performance degradation [6] and leakage
of other microarchitectural resources [1,3] remind us of the importance of constant-
time software implementations. One way to achieve constant-time memory behavior
is the adoption of small tables in combination with accessing all cache lines on each
lookup [67]. The overhead would be limited and is minimized by the parallelism we
can achieve in modern processors. Another constant-time approach adopted by some
public cryptographic schemes is interleaving the multipliers in memory known as
scatter–gather technique [16].

Constant-time implementations have effectively eliminated the first generation of
timing attacks that exploit obvious key dependent leakages. The common view is that
performance penalty is the only downside which, once paid, there is no need to be
further worried. However, this is far from the reality and constant-time implemen-
tations may actually give a false sense of security. A commonly overlooked fact is
that constant-time implementations and related protections are relative to the underly-
ing hardware [29]. In fact, there are major obstacles preventing us from obtaining true
constant-time behavior. Processors constantly evolve with newmicroarchitectural fea-
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tures rolled quietly with each new release and the variety of such subtle features makes
comprehensive evaluation impossible. A great example is the cache bank conflicts
attack onOpenSSLRSA scatter–gather implementation: it shows that adversaries with
intra cache level resolution can successfully bypass constant-time techniques relied on
cache-line granularity [77].As a consequence,whatmight appear as a perfect constant-
time implementation becomes insecure in the next processor release—or worse—an
unrecognized behavior might be discovered, invalidating the earlier assumption.

1.1 Our Contribution

We propose an attack named MemJam by exploiting false dependency of memory
read-after-write, and demonstrate key recovery against three different cryptographic
implementations which are secure against cache attacks with experimental results on
both regular and SGX environments. In summary:

– False dependency attack A side-channel attack on the false dependency of mem-
ory read-after-write.We showhow to dramatically slowdown the victim’s accesses
to specific memory blocks, and how this read latency can be exploited to recover
low address bits of the victim’s memory accesses.

– Attackonall block ciphers in IPPThe attacks utilize intra cache level information
on constant-time implementations of TripleDES,AES and SM4, chosen from Intel
integrated performance primitives (Intel IPP), which is optimized for both security
and speed and a default choice to be used in SGX enclaves.

– Attack on SGX enclave The first intra cache level attack against SGX Enclaves
supported by key recovery results on the constant-time AES implementation. The
aforementioned constant-time implementation of AES is part of the SGX SDK
source code.

– Countermeasures Discussion of software-level and hardware-level counter-
measures against MemJam including various constant-time implementation
techniques. Bypasses of remarkable protections such as proposals based on
constant-time techniques [16,67], static and runtime analysis [46,78] and new
cache architecture [21,47,51,73].

1.2 Experimental Setup and Generic Assumptions

Our experimental setup is a Dell XPS 8920 desktop machine with an Intel(R) Core
i7-7700 processor running Ubuntu 16.04. The Core i7-7700 has 4 hyper-threaded
physical cores. Our only assumptions are that the attacker is able to co-locate on
one of the logical processor pairs within the same physical core as the victim. In the
cryptographic attacks, the attacker can measure the time of victim encryption. The
attacker further knows which cryptographic implementation is used by the victim, but
she does not need to have any knowledge of the victim’s binary or the offset of the
S-Box tables. We will discuss assumptions that are specific to the attack on SGX at
Sect. 6.
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2 RelatedWork

Side channels including power, electromagnetic and timing channels have been stud-
ied for a few decades [18,19,49]. Timing side channels can be constructed through
the processor cache to perform key recovery attacks against cryptographic opera-
tions such as RSA [35], ECDSA [11], ElGamal [79], DES [68] and AES [45,58].
On multiprocessor systems, attacks on the shared LLC—a shared resource among
all the cores—perform well even when attacker and victim reside in different cores
[45]. Flush+Reload, Prime+Probe, Evict+Reload, and Flush+Flush are some of the
proposed attack methodologies with different adversarial scenarios [31,58,76]. Per-
formance degradation attacks can improve the channel resolution [6,33]. LLC attacks
are highly practical in cloud, where an attacker can identify where a particular victim
is located [62,79]. Despite the applicability of LLC attacks, attacks on core-private
resources such as L1 cache are as important [1,13]. Attacks on SGX in a system level
adversarial scenario are notable examples [50,54]. There are other shared resources,
which can be utilized to construct timing channels [28]. Exploitation of Branch Target
Buffer (BTB) leaks if a branch has been taken by a victim process [1,3,50]. Logi-
cal units within the processor can leak information about arithmetic operations [4,8].
CacheBleed proposes cache bank conflicts and false dependency of memory write-
after-read as side channels with intra-cache granularity [77]. However, cache bank
conflict leakage does not exist on current Intel processors, and we verify the authors’
claim that the proposed write-after-read false dependency side channel does not allow
efficient attacks. In a concurrent, but an independent contribution, 4K Aliasing has
been analyzed and used as a covert channel [66]: They show that false dependency
side channel can be used to detect multi-tenancy in Infrastructure as a Service (IaaS)
Clouds.

2.1 Defense

Software and hardware strategies have been proposed such as alternative lookup tables,
data-independent memory access pattern, static or disabled cache, and cache state nor-
malization to defend against cache attacks [67]. Scatter–gather techniques have been
adopted by RSA and ECC implementations [16]. In particular, introducing redun-
dancy and randomness to the S-Box tables for AES has been proposed [15]. A custom
memory manager [80], relaxed inclusion caches [47] and solutions based on cache
allocation technology (CAT) such asCatalyst [51] and vCat [73] are proposed to defend
against LLC contention. Sanctum [21] is a new processor design with respect to cache
attacks. Detection-based countermeasures have also been proposed using performance
counters, which can be used to detect cache attacks in cloud environments [17,78].
MASCAT [46] is proposed to block cache attacks with code analysis techniques.
CacheD [70] detects potential cache leakages in production software. Nonetheless,
these proposals assume that the adversary cannot distinguish accesses within a cache
line. That is, attacks with intra cache-line granularity are considered out-of-scope.
Doychev et al. proposed the only software leakage detector that considers full address
bits as its leakage model [25].
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3 Background

3.1 Multitasking

The memory management subsystem shares the dynamic random-access memory
(DRAM) among all concurrent tasks, in which a virtual memory region is allocated
for each task transparent to the physical memory. Each task is able to use its entire
virtual address space without meddling of memory accesses from others. Memory
allocations are performed in pages, where each virtual memory page can be stored in
a DRAM page with a virtual-to-physical page mapping. The logical processors are
also shared among these tasks and each logical processor executes instructions from
one task at a time, and switches to another task. Memory write and read instructions
work with virtual addresses, and the virtual address is translated to the corresponding
physical address to perform the memory operation. The OS is responsible for page
directory management and virtual page allocation. The OS assists the processor to per-
form virtual-to-physical address translation by performing an expensive page walk.
The processor saves the address translation results in a memory known as Translation
Look-aside Buffer (TLB) to avoid the software overhead introduced by the OS. Intel
microarchitecture follows a multi-stage pipeline and adopts different optimization
techniques to maximize the parallelism and multitasking during the pipeline stages
[39]. Among these techniques, hyper-threading allows each core to run multiple con-
current threads, and each thread shares all the core-private resources. As a result, if
one resource is busy by a thread, other threads can consume the remaining available
resources. Hyper-threading is abstracted to the software stack: OS and applications
interact with the logical processors.

3.2 CacheMemory

DRAMmemory is slow compared to the internal CPU components. Modern microar-
chitectures take advantage of a hierarchy of cache memories to fill the speed gap. Intel
processors have two levels of core-private cache (L1, L2), and a Last Level Cache
(LLC) shared among all cores. The closer the cache memory is to the processor, the
faster, but also smaller it is compared to the next level cache. Cache memory is orga-
nized into different sets, and each set can store some number of cache lines. The cache
line size, which is 64 byte, is the block size for all memory operations outside of the
CPU. The higher bits of the physical address of each cache line is used to determine
which set to store/load the cache line. When the processor tries to access a cache
line, a cache hit or miss occurs respective of its existence in the relevant cache set.
If a cache miss occurs, the memory line will be stored to all 3 levels of cache and to
the determined sets. Reloads from the same address would be much faster when the
memory line exists in cache. In a multicore system, the processor has to keep cache
consistent among all levels. In Intel architecture, cache lines follow a write-back pol-
icy, i.e., if the data in L1 cache is overwritten, all other levels will be updated. The LLC
is inclusive of L2 and L1 caches, which means that if a cache line in LLC is evicted,
the corresponding L1 and L2 cache lines will also be evicted [39]. These policies help

123



International Journal of Parallel Programming (2019) 47:538–570 543

Core 1

Logical
CPU

Logical
CPU

Memory Order
Buffer

L1

L2

L3

Core 2

Logical
CPU

Logical
CPU

Memory Order
Buffer

L1

L2

Core N

Logical
CPU

Logical
CPU

Memory Order
Buffer

L1

L2

Attacker

Victim

Fig. 1 Cache hierarchy of an Intel processor: the L3 cache is shared among available cores. Core-private
caches such as L1 and L2 are shared between logical hyper-threading CPUs. Memory access dependencies
are determined within the memory order buffer (MOB). An adversary who is co-located on the same core
exploiting hyper-threading, can mount attacks on victims sharing the same resources

to avoid stale cached data where one processor reads invalid data mutated by another
processor.

3.3 L1 Cache Bottlenecks

The L1 cache port has a limited bandwidth and simultaneous accesses will block
each other. This bottleneck is critical in super-scalar multiprocessor systems. Older
processor generations adopted multiple banks as a workaround to this problem [5],
in which each bank can operate independently and serve one request at a time. While
this partially solved the bandwidth limit, it creates the cache bank conflict phenomena
where simultaneous accesses to the same bankwill be blocked. Intel resolved the cache
bank conflict issue with the Haswell generation [39]. Another bottleneck mentioned
in various resources is due to the false dependency of memory addresses with the
same cache set and offset [5,39]. Simultaneous read and write with addresses that
are multiples of 4kB is not possible, and they halt each other. The processor cannot
determine the dependency from the virtual address, and addresses with the same last
12 bits have the chance to map to the same physical address. Such simultaneous
access can happen between two logical processors and/or during the out-of-order
execution, where there is a chance that a memory write/read might be dependent on a
memory read/write with the same last 12 bits of address. Such dependencies cannot
be determined on the fly, thus they cause latency (Fig. 1).

3.4 Cache Attacks

Cache attacks can be exploited by adversaries where they share system cache mem-
ory with benign users. In scenarios where the adversary can colocate with a victim
on the same core, she can attack core-private resources such as L1 cache, e.g., OS
adversaries [50,54]. In cloud environment, virtualization platforms allow sharing of
logical processors to different VMs; however, attacks on the shared LLC have a
higher impact, since LLC is shared across the cores. In cache timing attacks, the
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attacker either measure the timing of the victim operations, e.g., Evict+Time [58]
or the timing of his own memory accesses, e.g., Prime+Probe [45]. The attacker
needs to have access to an accurate time resource such as the RDTSC instruction.
In the basic form, attacks are performed by one observation per entire operation.
In certain scenarios, these attacks can be improved by interrupting the victim and
collecting information about the intermediate memory states. Side-channel attacks
exploiting cache bank conflicts rely on synchronous resource contention. CacheBleed
methodology is somewhat similar to Prime+Probe, where the attacker performs
repeated operations, and measures it’s own access time [77]. In a cache bank con-
flict attack, the adversary repeatedly performs simultaneous reads to the same cache
bank and measures their completion time. A victim on a colocated logical proces-
sor who access the same cache bank would cause latency to the attacker’s memory
reads.

4 MemJam: Read-After-Write Attack

MemJam utilizes false dependencies. Data dependency occurs when an instruction
refers to the data of a preceding instruction. In pipelined designs, hazards and pipeline
stalls can occur from dependencies if the previous instruction has not finished. There
are cases where false dependencies occur, i.e. the pipeline stalls even though there is no
true dependency. Reasons for false dependencies are register reuse and limited address
space for the Arithmetic Logic Unit (ALU). False dependencies degrade instruction
level parallelism and cause overhead. The processor eliminates false dependencies
arising from register reuse by a register renaming approach. However, there exist
other false dependencies that need to be addressed during the software optimization,
e.g. Partial Register Stalls [39,40].

In this work, we focus on a critical false dependency mentioned as 4K Aliasing
where data that is multiples of 4K apart in the address space is seen as dependent. 4K
Aliasing happens due to virtual addressing of L1 cache, where data is accessed using
virtual addresses, but tagged and stored using physical addresses. Multiple virtual
addresses can refer to the same data with the same physical address and the deter-
mination of dependency for concurrent memory accesses, requires virtual address
translation. Physical and virtual address share the last 12 bits, and any data accesses
whose addresses differ in the last 12 bits (i.e. the distance is not 4k) cannot have a
dependency. For the fairly rare remaining cases, address translation needs to be done
before resolving the dependency, which causes latency. Note that the granularity of
the potential dependency, i.e. whether two addresses are considered “same”, depends
also on the microarchitecture, as dependencies can occur at the word or cache line
granularity (i.e. ignoring the last 2 or last 6 bits of the address, respectively). These
rare false dependencies due to 4K Aliasing can be exploited to attack memory, since
the attacker can deliberately process falsely dependent data by matching the last 12
bits of his own address with a security critical data inside a victim process.
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4K Aliasing has been mentioned in various places as an optimization problem
existing on all major Intel processors [5,39]. We verify the results of Yarom et al.
[77], the only security related work regarding false dependencies, which exploited
write-after-read dependencies. The resulting timing leakage by write stall after read
is not sufficient to be used in any cryptographic attack. MemJam exploits a different
channel due to the false dependency of read-after-write, which causes a higher latency
and is thus simply observable. Intel Optimization Manual highlights the read-after-
write performance overhead in various sections [39]. As described in Section 11.8,
this hazard occurs when a memory write is closely followed by a read, and it causes
the read to be reissued with a potential 5 cycles penalty.1 In Section B.1.4 on memory
bounds, write operations are treated under the store bound category. In contrast to
load bounds, Top-down Microarchitecture Analysis Method (TMAM)2 reports store
bounds as fraction of cycles with low execution port utilization and small performance
impact. These descriptions in various sections highlight that read-after-write stall is
considered more critical than write-after-read stall.

4.1 Memory Dependency Fuzz Testing

We performed a set of experiments to evaluate the memory dependency behavior
between two logical processors. In these experiments, we have threadA andB running
on the same physical core, but on different logical processors, as shown in Fig. 2. Both
threads perform memory operations; only thread B measures its timing and hence the
timing impact of introduced false dependencies.

Read-after-read (RaR) In the first experiment, the two logical threads A and B read
from the same shared cache and can potentially block each other. This experiment can
reveal cache bank conflicts, as used by CacheBleed [77]. B uses Listing 1 to perform
read measurements andA constantly reads from different memory offsets and tries to
introduce conflicts. A reads from three different type of offsets: (1) Different cache
line thanB, (2) same cache line, but different offset thanB, and (3) same cache line and
same offset as B. As depicted, there is no obvious difference between the histograms
for three cases in Fig. 3a verifying the lack of cache bank conflicts on 7th generation
CPUs.

Write-after-read (WaR) The histogram results for the second experiment on false
dependency of write-after-read is shown in Fig. 3b, in which the cache line granularity
is obvious. Thread A constantly reads from different type of memory offsets, while
thread B uses Listing 2 to perform write measurements. The standard deviation for
conflicted cache line (blue) and conflicted offset (red) between thread A and B is
distinguishable from the green bar where there is no cache line conflict. This shows
a high capacity cache granular behavior, but the slight difference between conflicted
line and offset verifies the previous results stating a weak offset dependency [77].

1 LD_BLOCKS_PARTIAL.ADDRESS_ALIAS Performance Monitoring Unit (PMU) event counts the
number of times reads were blocked.
2 Top-Down Characterization is a hierarchical organization of event-based metrics that identifies the dom-
inant performance bottlenecks in an application.
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Fig. 2 Based on the attack
model, thread A and B both run
on the same core, and introduce
and probe stall hazards

loop:
rdtscp ;
mov% eax , (%r9 ) ;
movb 0 x 0000 (%r10) , % al ;
movb 0 x 1000 (%r10) , % al ;
movb 0 x 2000 (%r10) , % al ;
movb 0 x 3000 (%r10) , % al ;
movb 0 x 4000 (%r10) , % al ;
movb 0 x 5000 (%r10) , % al ;
movb 0 x 6000 (%r10) , % al ;
movb 0 x 7000 (%r10) , % al ;
add $4, %r9 ;
dec % r11;
jnz loop ;

Listing 1 is used to probe 8 parallel reads. r9 points to a measurement buffer, and r11 is initialized with the
probe count

loop :
rdtscp
mov% eax , (%r9 ) ;
movb% al , 0 x 0000 (%r10 ) ;
movb% al , 0 x 1000 (%r10 ) ;
movb% al , 0 x 2000 (%r10 ) ;
movb% al , 0 x 3000 (%r10 ) ;
movb% al , 0 x 4000 (%r10 ) ;
movb% al , 0 x 5000 (%r10 ) ;
movb% al , 0 x 6000 (%r10 ) ;
movb% al , 0 x 7000 (%r10 ) ;
add $4, %r9
dec % r11
jnz loop

Listing 2 is used to probe 8 parallel writes. r9 points to a measurement buffer, and r11 is initialized with
the probe count

Read-after-write (RaW) Figure 3c shows an experiment on measuring false depen-
dency of read-after-write, in which, thread A constantly writes to different memory
offsets. Thread B uses Listing 1 to perform read measurements. Accesses to three dif-
ferent types of offsets are clearly distinguishable. The conflicted cache line accesses
(blue) are distinguishable from non-conflicted accesses (green). More importantly,
conflicted accesses to the same offset (red) are also distinguishable from conflicted
cache line accesses, resulting in a side channel with intra cache-line granularity. There
is an average of 2 cycle penalty if the same cache line has been accessed, and a 10 cycle
penalty if the same offset has been accessed. Note that the word offsets in our platform
have 4 byte granularity. From an adversarial standpoint, this means that an adversary
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Fig. 3 Three different scenarios where different cache line (green), same cache line (blue) and same offset
(red) have been accessed by two logical processors. Experiment (c) on RaW latency has distinguishable
characteristics for the conflicted word offset (red), while (a), (b) feature nimble differences (Color figure
online)

learns about bits 2–11 of the victim memory access, in which 4 bits (bits 2–5) are
related to intra cache-line resolution, and thus goes beyond any other microarchitec-
tural side channels known to exist on 6th and 7th generation Intel processors (Fig. 6).

Read-after-weak-Write (RawW) In this experiment on the read-after-write conflicts,
we followed a less greedy strategy on the conflicting thread. Rather than constantly
writing to the same offset,A executes write instructions to the same offset with some
gaps filled with other memory accesses and instructions. As shown in Fig. 4, the
channel dramatically became less effective. This tells us that causing read access
penaltywill bemore effectivewith constantwrites to the same offsetwithout additional
instruction. In this regard, we will use Listing 3 in our attack to achieve the maximum
conflicts.

Read-after-write latency In the last experiment, we tested the delay of execution over
a varying number of conflicting reads.We created a code stub that includes 64memory
read instructions and a random combination of instructions between memory reads
to create a more realistic computation. The combination is chosen in a way to avoid
unexpected halts and tomaintain the parallelism of all read operations.Wemeasure the
execution time of this computation onB, whileA iswriting to a conflicting offset. First,
we measured the computation with 64 memory reads to addresses without conflicts.
Our randomly generated code stub takes an average of 210 cycles to execute. On each
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Fig. 4 RawW: compared to
Fig. 3c, this shows a lower
impact on access latency
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step of the experiments, as shown in Fig. 5, we change some of the memory offsets to
have the same last 12 bits of address as of A’s conflicting write offset. We observe a
growth on read accesses’ latency by increasing the number of conflicting reads. Fig. 5
shows the results for a number of experiments. In all of them, the overall execution
time of B is strongly dependent on the number of conflicting reads. Hence, we can use
the RaW dependency to introduce strong timing behavior using bits 2–11 of a chosen
target memory address.

mov% [ target ] , % rax ;
write_loop :
. rept 100;
movb $0, (% rax ) ;
. endr ;

jmp write_loop ;

Listing 3 Write Conflict Loop: Unnecessarily instructions are avoided to minimize usage of other processor
units and to maximize the RaW conflict effect.

5 MemJam Correlation Attack

MemJam uses read-after-write false dependencies to introduce timing behavior to
otherwise constant-time implementations. The resulting latency is then exploited using
a correlation attack. MemJam proceeds with the following steps:

1. Attacker launches a process constantly writing to an address using Listing 3 where
the last 12 bits match the virtual memory offset of a critical data that is read in the
victim’s process.

2. While the attacker’s conflicting process is running, attacker queries the victim for
encryption and records a ciphertext and execution time pair of the victim. Higher
time infers more accesses to the critical offset.

3. Attacker repeats the previous step collecting ciphertext and time pairs.

The attack methodology resembles the Evict+Time strategy originally proposed by
Tromer et al. [67], except that the attacker uses false dependencies rather than evictions
to slow down the target and that the slowdown only applies to an 4-byte block of a
cache line. Furthermore, all of the victim’s accesses addresses with the same last 12
bits are slowed down while an eviction only slows the first memory access(es).
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Fig. 5 The cycle count for mixed operations with RaW conflicts. More conflicts cause higher delay

Fig. 6 Intra cache level
leakage: MemJam latency is
related to 10 address bits, in
which 4 bits are intra cache level
bits
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Based on the intra cache level leakage in Fig. 6, we divide a 64 byte cache line into
4-byte blocks and hypothesize that the access counts to a block are correlated with the
running time of victim, while the attacker jams memory reads to that block, i.e., the
attacker expects to observe a higher time when there are more accesses by the victim
to the targeted 4-byte block and lower time when there are lower number of accesses.
Based on this hypothesis, we apply a classical correlation based side-channel approach
[49] to attack implementations of three different block ciphers, namely Triple DES,
AES and SM4. SM4 among AES, Triple DES, and RC4 are the only available sym-
metric ciphers as part of Intel’s IPP crypto library [42].3 Each implementation has
optimizations to hinder cache attacks. In fact, the Triple DES and the AES imple-
mentations feature a constant cache profile and can thus be considered resistant to
most microarchitectural attacks including cache attacks and high-resolution attacks as
described in [54]. MemJam can still extract the keys from both implementations due
to the intra cache-line spatial resolution as depicted in Fig. 6. We describe the targeted
implementations next, as well as the correlation models we use to attack them.

5.1 Attack 1: IPP Constant-Time Triple DES

The TripleDES encryption algorithm [55] is an extension of theDES (Data Encryption
Standard) algorithm. While Triple DES was recently declared as deprecated [56],
mainly due to its insufficient block size [12] and the resulting attacks for larger amounts
of encrypted data, it is still supported or even required in many applications: The

3 Patents investigated by Intel verify the importance of SM4 [32,72,75].
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Fig. 7 Feistel function (blue) in round i of the DES algorithm: first the current right block Ri is expanded
to 48 bits and XORed with the round key. Then this value is divided into eight 6-bit blocks, which are
substituted by 4-bit blocks using eight different S-boxes. Finally the result is permuted and XORed with
the current left block (Color figure online)

latest EMVCo4 specification for payment systems permits its usage without further
restrictions [27], and current TLS 1.2 standard contains Triple DES as a legacy cipher
[23].

Given three different 56-bit keysK1,K2,K3 and a 64-bit plain text block M , Triple
DES in Encrypt–Decrypt–Encrypt (EDE) mode calculates the cipher text C as

C := 3DESK1,K2,K3(M) = DESK3

(
DES−1

K2

(
DESK1(M)

))
.

DES itself is a Feistel network with 16 rounds. First the plain text M is permuted
using an initial permutation M ′ := IP(M) and then divided into two 32-bit blocks
M ′ = L0.R0. In round i ∈ {0, . . . , 15} the algorithm then calculates

Li+1 := Ri and Ri+1 = Li ⊕ f (Ki , Ri )

for a given round key Ki . The ciphertext C is obtained by applying the inverse of the
initial permutation to the last blocks:

C := IP−1 (L16 · R16) .

The Feistel function f (Fig. 7) takes a 48-bit round key Ki and the current right
block Ri , and computes its output by doing the following steps:

1. Expand Ri to 48 bits by generating eight 6-bit blocks

Bi, j := Ri [4 j − 1mod 32].Ri [4 j + 0] . . . Ri [4 j + 3].Ri [4 j + 4mod 32]

for j ∈ {0, . . . , 7}.
4 EMVCo is an industry consortium managing a payment system standard that was originally created
by EuroPay, MasterCard and Visa (resulting in the EMV trademark). Current members include American
Express, MasterCard, Visa and UnionPay [26].

123



International Journal of Parallel Programming (2019) 47:538–570 551

2. Partition the round key to eight 6-bit blocks Ki = Ki,0 . . . Ki,7 and set the substi-
tution box inputs as

Sini, j := Bi, j ⊕ Ki, j

for each j ∈ {0, . . . , 7}.
3. Use eight S-boxes S0, . . . S7 to convert the 6-bit inputs into 4-bit outputs:

Souti, j := S j

(
Sini, j

)

for each j ∈ {0, . . . , 7}.
4. Permute the S-Box outputs using a round permutation P to acquire the Feistel

function output
output := P

(
Souti,0 . . . Souti,7

)
.

The round keys are generated using a schedule consisting of left shifts and per-
mutations [55], we skip a deeper explanation here. Decryption works the same as
encryption, except that the round keys are applied in reverse order.

Our target, the Triple DES implementation of Intel’s Integrated Performance Prim-
itives Crypto library, comes in various flavors where each is optimized for a specific
instruction set, but they all have similar cache behavior: The central DES encryp-
tion/decryption function Cipher_DES first applies the initial permutation, that is
implemented as a fixed number of bit operations without any memory accesses. The
following 16 rounds are unrolled, each round has exactly 2 + 16 memory accesses,
where the first two memory accesses load the respective round key. The eight S-box
inputs are processed consecutively; for each input (1) the substitution is performed (by
reading from the fixed S-box array), and then (2) the 4-bit S-Box output is converted
into its 32-bit permuted form (using another lookup table). Finally, these permuted
outputs are XORed with each other to acquire the output of the Feistel function. Each
S-box has 26 = 64 1-byte entries and therefore fits exactly into one cache line; the
same applies to the permutation lookup table, which has 24 = 16 4-byte entries.

This implies that each cache line is accessed exactly once per round, leading to
constant time cache behavior that prevents any attacks with cache-line granularity. To
obtain data-dependent timing behavior, we usedMemJam to induce false dependencies
on the first four bytes of the first S-box, slowing down the read accesses to this offset.
Since this gives us 4 bytes of resolution, we can deduce 4 bits of the respective S-box
input, which correspond to 4 bits of the round key. A single observation consists of the
resulting cipher text Ci and the amount of clock cycles Ti the Triple DES operation
takes to execute. Using n of such measurements (with random plain texts), we can
work ourselves into the cipher, starting from the last round.

Single-round attack on triple DES Each cipher textCi consists of blocks L16 = R15
and R16, where the former directly gives us the eight 6-bit blocks B15,0, . . . B15,7. We
guess the round key block K15,0, and set

– v[i] := 1, if Sin15,0 = B15,0 ⊕ K15,0 = · · 0000
– v[i] := 0, else

for a binary vector v ∈ {0, 1}n .
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We loose the two least significant bits (written as “·”) due to the 4-byte resolution
of MemJam. Since the IPP implementation reverses the bit order of each block and
round key, the least significant bits are written first. Maximizing the correlation

corr(v, T )

between the binary vector v and the clock cycle count vector T over all possible round
key blocks K15,0 then gives us the four key bits K3[2], K3[21], K3[36] and K3[49],
since the slow runs should be nearly uniformly distributed for wrong guesses.

Multi-round attack on triple DES To get the missing 52 key bits, we repeat the
attack process in a similar fashion for round 14: The round key block K14,0 that
we are interested in gives us key bits K3[9], K3[28], K3[31] and K3[43], but we
also need the last four bits of block B14,0; for these, we have to partially calculate
L15 = R16 ⊕ P(Sout15,0 . . . S

out
15,7), which depends on K15,1, K15,4, K15,5 and K15,7,

summing up to 4 · 6 = 24 additional key bits, of which two are already included in
the round key K14,0.

Repeating the same process for round 13 (where we need almost all key bits from
round 15 to calculate the relevant S-boxes in round 14) yields another 21 bits of key
K3. The remaining 5 key bits are derived from round 12. To obtain the remaining keys
K1 and K2, we repeat the attack using cipher texts decrypted with K3.

To reduce the computational effort one can also take additional measurements on
the other S-boxes, yielding up to 32 key bits in round 15; however, this also multiplies
the amount of measurements, and one still needs to analyze prior rounds to retrieve the
missing 24 key bits, although with greatly reduced time complexity. So, overall, we
see that there is a trade-off between the amount of measurements and the computation
time spent on the analysis.

Triple DES key recovery results on synthetic data To verify the correctness of our
attackwe first generated some synthetic data, where the timings were set as the amount
of accesses to the first four bytes of the first S-box. In this noise free setting we needed
less than 1000 observations to find 19 bits of the 14th round key, with a correlation of
0.201.

Triple DES key recovery results using MemJam The time needed for a successful
attack primarily depends on the amount of measurements and the number of simul-
taneously guessed bits. The attacks on round 15 (4 key bits) and 12 (5 key bits) are
negligible, but round 14 (26 key bits) needs 226n steps and round 13 (21 key bits)
221n steps; this corresponds to tens of hours of computation time per DES key. While
this is significantly less than guessing all 56 bits at once, reducing the amount of
measurements is still desirable. Figure 8 shows the correlations for different mea-
surement counts, when guessing 14 key bits in round 14. Experiments showed that
250,000–300,000 measurements suffice to recover all three keys.

5.2 Attack 2: IPP Constant-Time AES

AES is a cipher based on substitution permutation network (SPN) with 10 rounds
supporting 128-bit blocks and 128/192/256-bit keys [22]. The SubBytes is a security-
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Fig. 8 The hundred highest and lowest timing correlationswhen guessing 14 key bits in round 14, depending
on the amount of measurements (logarithmic scale). The correct key (blue) becomes distinguishable at
around 250,000 measurements (Color figure online)

critical operation and the straightforward way to implement AES SubBytes operation
efficiently in software is to use lookup tables. SubBytes operates on each byte of
cipher state, and it maps an 8-bit input to an 8-bit output using a non-linear function.
A precomputed 256 byte lookup table known as S-Box can be used to avoid recompu-
tation. There are efficient implementations using T-Tables that output 32-bit states and
combine SubBytes and MixColumns operations. T-Table implementations are highly
vulnerable to cache attacks. During AES rounds, a state table is initiated with the
plaintext, and it holds the intermediate state of the cipher. Round keys are mixed with
states, which are critical S-Box inputs and the main source of leakage. Hence, even an
adversary who can partially determine which entry of the S-Box has been accessed is
able to learn some information about the key.

Among the efforts tomakeAES implementationsmore secure against cache attacks,
Safe2Encrypt_RIJ128 function from Intel IPP cryptographic library is notewor-
thy. This implementation is the only production-level AES software implementation
that features true cache constant-time behavior and does not utilize hardware exten-
sions such as AES-NI or SSSE3 instruction sets. This implementation is also part of
the Linux SGX SDK [38] and can be used for production code if the SDK is compiled
from the scratch, i.e., it does not use prebuilt binaries. We verified the match between
the implementation in Intel IPP binary and SGX SDK source code through reverse
engineering. This implementation follows a very simple direction: (1) it implements
AES using 256byte S-Box lookups without any optimization such as T-Tables, (2)
instead of accessing a single byte of memory on each S-Box lookup, it fetches four
values from the same vertical column of 4 different cache lines and saves them to
a local cache aligned buffer, finally, (3) It performs the S-Box replacement by pick-
ing the correct S-Box entry from the local buffer. This implementation is depicted in
Fig. 9. This implementation protects AES against any kind of cache attacks, as the
attacker sees a constant cache access pattern: The S-Box table only occupies 4 cache
lines, and on each SubBytes operation, all of them will sequentially be accessed. This
implementation can be executed in less than 2000 cycles on a recent laptop processor.
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Fig. 9 Constant-time table lookup used by Intel IPP: each lookup preloads 4 values to a cache aligned
buffer, thus it accesses all the 4 S-Box cache lines. The actual output will be chosen from the buffer using
the high address bits

This is fast enough for many cryptographic applications, and it provides full protection
against cache attacks, even if the attacker can interrupt the execution pipeline.

Based on MemJam 4-byte granular leakage channel, and the design of AES, we
can create a simple correlation model to attack this implementation. The accessed
table index of the last round for a given ciphertext byte c and key byte k is given
as index = S−1(c ⊕ k). We define matrix A for the access profile where each row
corresponds to a known ciphertext, and each column indicates the number of accesses
when index < 4. While we assume that the attacker causes slow-downs to the first
4-byte block of S-Box, we define matrix L for leakage where each row corresponds to
a known ciphertext and each column indicates the victim’s encryption time. Then our
correlation attack is defined as the correlation betweenA andL, in which the higher the
number of accesses, the higher the running time. Our results will verify that correlation
is high, even though the implementation has dummy accesses to the monitored block.
These can be ignored as noise, slightly reducing our maximum achievable correlation.
AES key recovery results on synthetic data We first verified the correctness of our
correlation model on synthetic data using a noise free leakage (generated by PIN
[41]). For each of the 16 key bytes using a vector that matches exactly to the number
of accesses to the targeted block of S-Box for different ciphertexts, all the correct key
bytes will have the highest correlation after 32,000 observations with the best and
worst correlations of 0.046 and 0.029 respectively.

AES Key recovery results using (MemJam) Relying on the verification of Synthetic
Data, we plugged in the real attack data vector, which consists of pairs of ciphertext and
time measured through repeated encryption of unknown data blocks. Results on AES
show that we can effectively exploit the timing information, and break the so-called
constant-time implementation. The victim execution of AES encryption function takes
about 1700 and 2000 cycles without and with an active thread on the logical processor
pair, respectively. The target AES implementation performs 640 memory accesses
to the S-Box, including dummy accesses. If the spy thread constantly writes to any
address that collides with an S-Box block offset, the time will increase to a range
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Fig. 10 Linearity of the number of accesses to the first block and the execution time of AES: the synthetic
correlation andMemJam observed correlation show similar behavior with slight difference due to the added
noise
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Fig. 11 Correlations for 4 key bytes using 2 million observations. Correct key byte candidates have the
highest correlations

between 2000 and 2300 cycles. The observed variation in this range has a correlation
with the number of accesses to that block. Figure 10 shows the linear relationship
between the correlation of synthetic data and real attack data for one key byte after 2
million observations. Most of the possible key candidates for a target key byte have a
matching peak and hill between the two observations. The highest correlation points
in both cases declare the correct key byte (0.038 red, 0.014 blue). The quantitative
difference is due to the expected noise in the real measurements.

Figure 11 shows the correlation of 4 different key bytes after 2 million observations
with the correct key bytes having the highest correlations. Our repeated experiments
with different keys and ciphertexts show that 15 correct key bytes have the highest
correlation ranks, and there is only the key byte at index 15 that has a high rank but not
necessarily the highest. Figure 12 shows the key ranks over the number of observations.
Key byte ranks take values between 1 and 256, where 1 means that the correct key
byte is the most likely one. As it is shown, after only 200,000 observations, the key
space is reduced to a computationally insecure space and a key can be found with
an efficient key enumeration method [30]. After 2 million observations, all key bytes
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Fig. 12 The rank for correct key bytes are reduced with more observation. After 2 million observations, 15
out of 16 key bytes are recovered
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Fig. 13 The timing correlations for guessing one of the AES key bytes, depending on the amount of
measurements. The correct key (blue) becomes distinguishable at around 65,000 measurements (Color
figure online)

except one of them are recovered. For most of the key bytes, only tens of thousands of
measurements is suffice to recover the correct key byte (Fig. 13). The non-optimized
implementation of this attack processes 2 million observations in 5min.

5.3 Attack 3: IPP Cache Protected SM4

SM4 (formerly SMS4) is a block cipher standardized by the Chinese government
and the standard encryption for Wireless LAN Wired Authentication and Privacy
Infrastructure (WAPI) [24]. SM4 features an unbalanced Feistel structure and supports
128-bit blocks and keys. SM4 is known to be secure and no relevant cryptanalytic
attacks exist for the cipher. Figure 14 shows a schematic of one round of SM4. T1–T4
are 4× 32-bit state variables of SM4. Within each round, the last three state variables
and a 32-bit round key are mixed, and each byte of the output will be replaced by
a non-linear S-Box value. After the non-linear layer, the combined 32-bit output of
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Fig. 14 SM4 Feistel structure: in each round, the last three words from the state buffer and the round key
will be added. Each byte of the output will be replaced by S-Box lookup. The function L performs a linear
bit permutation

S-Boxes x are diffused using the linear function L. The output of L is then mixed with
the first 32-bit state variable to generate a new random 32-bit state value. The same
operation is repeated for 32 rounds, and each time a new 32-bit state is generated as the
next round T4 state. The current T2, T3, T4 are treated as T1, T2, and T3 for the next
round. The final 16 bytes of the entire state after the last round produce the ciphertext.
SM4 Key schedule produces 32× 32-bit round keys from a 128-bit key. Since the key
schedule is reversible, recovering 4 repeated round keys provides enough entropy to
reproduce the cipher key.

All the SM4 operations except the S-Box lookup are performed in 32-bit word sizes.
Hence, SM4 implementation is both simple and efficient on modern architectures.
We chose the function cpSMS4_Cipher from Intel IPP Cryptography library. Our
target is based on the straightforward cipher algorithm with addition of S-Box cache
state normalization. We recovered this implementation through reverse engineering
of Intel IPP binaries. The implementation preloads four values from different cache
lines of S-Box before the first round, and it mixes them with some dummy variables,
forcing the processor to fill the relevant cache lines with S-Box table. This cache
prefetching mechanism protects SM4 against asynchronous cache attacks. On our
experimental setup, the implementation runs in about 700 cycles, which informs us that
this implementation maintain a high speed while secure against asynchronous attacks.
Interrupted attacks that leak intermediate states would not be as simple, since the
interruption need to happen faster than 700 cycles.Wewill further discuss the difficulty
of correlating any cache-granular information, even if we assume the adversary can
interrupt the encryption and perform some intermediate observations.
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Single-round attack on SM4 We define c1, c2, c3, c4 as the four 32-bit words of a
ciphertext and kr as the secret round key for round r . We recursively follow the cipher
structure from the last round with our ciphertext words as inputs, and write the last
5 rounds’ relations as Eq. 1. In each round, xir is the S-Box index, and i is the byte
offset of the 32-bit word xr . With a similar approach to the attack on AES, we define
matrix A for the access profile, where each row corresponds to a known ciphertext,
and each column indicates the number of accesses when xir < 4. Then we define the
matrix L for the observed timing leakage and the correlation betweenA and L similar
to the AES attack. In contrast, S-Box indices in the AES attack are defined based on
a non-linear inverse S-Box operation of key and ciphertext, which eventually maps
to all possible key candidates. In SM4, the index xir is defined before any non-linear
operation. As a result, an attack capable of distinguishing accesses of 4 out of 256
S-Box entries reveals only 6 bits per key byte. In the mentioned relations, performing
the attack using this model on xi32, recovers the 6 most significant bits of each key
byte i for the last round key (Total of 24 out of the 32 bits).

Multi-round attack on SM4 The relationship for round 31 can be used not only to
recover 6-bit key candidates of round 31, but also the remaining unknown 8 bits of
entropy for round 32. This is due to the linear property of function L and the recursive
nature of newly created state variables. After the attack on round 32, similar to the
round key, we only have certainty about 24 bits of the new state variable d1, but this
information will be propagated as the input to round 31. The next round of attack for
key byte of round 31 needs more computation to process an 8 bit of unknown key and
8 bit of unknown state (total of 16 bit), but this is computationally feasible, and the
8-bit key from round 32 with highest correlation can be recovered by attacking the
S-Box indices in round 31. We recursively applied this model to each round resulting
a correlation attack with the following steps, which gives us enough entropy to recover
the key:

1. x32 → 24 bits of k32.
2. x31 → 24 bits of k31 + 8 bits of k32
3. x30 → 24 bits of k30 + 8 bits of k31
4. x29 → 24 bits of k29 + 8 bits of k30
5. x28 → 24 bits of k28 + 8 bits of k29
6. Recover the key from k32, k31, k30, k29

SM4 key recovery results on synthetic data Our noise-free synthetic data shows
that 3000 observations are enough to find all correct 6-bit and 8-bit round key can-
didates with the highest correlations. Even in an interrupted cache attack or without
cache protection, targeting this implementation using a cache-granular information
would be much harder and inefficient due to the lack of intra cache-line resolution. If
we only distinguish the 64-byte cache lines out of a 256-byte S-Box, we only learn
4 × 2-bit (total of 8 bits) out of 32-bit round keys, and on each round, we need to
solve 8 bits + 24 bits of uncertainty. Although solving 32-bit of uncertainty sounds
possible for a noise-free data, it is computationally much harder in a practical noisy
setting. Our intra cache line leakage can exploit SM4 efficiently in a known-ciphertext
scenario, while the best efficient cache attack on SM4 requires chosen plaintexts [57].
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SM4 key recovery results using MemJam The results on SM4 show even more
effective key recovery against this implementation compared to AES. Figure 15 shows
the correlation rate over measurements for one key byte in the first round of attack
which 13,000 measurements is suffice to distinguish the correct 6-bit round key (blue)
for this key byte. Figure 16 shows the correlation for 6-bit round keys after 5 rounds
of repeated attack, and the correlation for 12-bit key candidates can be seen in Fig. 17.
The attack expects assurance on the correct key candidates for each round of attack
before proceeding to the next round due to the recursive structure of SM4. In our
experiment using real measurement data, we have noticed that 40,000 observations
are sufficient to have assurance of correct key candidates with the highest correlations.
Our implementation of the attack can recover the correct 6-bit and 8-bit keys, and it
takes about 5min to recover the cipher key. In Fig. 17, we plotted the accumulated
per byte correlations for all 8-bit candidates within each round of attack. During the
computation of 6-bit candidates, the 8-bit candidates relate to 4 different state bytes.
This accumulation greatly increases the result and the correct 8-bit key candidates
have a very high aggregated correlation compared to the 6-bit candidates.
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Fig. 15 The timing correlations for guessing one of the SM4 key bytes in a single round attack, depend-
ing on the amount of measurements. The correct key (blue) becomes distinguishable at around 13,000
measurements (Color figure online)
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Fig. 16 Correlations for SM4 6-bit keys of the last 4 32-bit round key recovered through 5 rounds of attack
using 40,000 observations
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Fig. 17 The accumulated correlations for SM4 8-bit keys after 5 rounds using 40,000 observations. Each
correct candidate has the highest correlation

6 MemJaming SGX Enclave

Intel SGX is a trusted execution environment (TEE) extension released as part of
Skylake processor generation [38]. The main goal of SGX is to protect runtime data
and computation from system and physical adversaries. Having said that, SGX must
remain secure in the presence of malicious OS, thus modification of OS resources for
facilitation of side-channel attacks is relevant and within the considered threat model.
Previous works demonstrate high resolution attacks with 4kB page [69,74] and 64B
cache line granularity [14,54]. Intel declared microarchitectural leakages out of scope
for SGX, thus pushing the burden of writing leakage free constant-time code onto
enclave developers. Indeed, Intel follows this design paradigm and ensures constant
cache-line accesses for its AES implementation, making it resistant to all previously
known microarchitectural attacks in SGX.

In this section, we verify that MemJam is also applicable to SGX enclaves, as
there is no fundamental microarchitectural changes to resist against memory false
dependencies. We repeat the key recovery results against Intel’s constant-time AES
implementation aftermoving it into an SGX enclave. The results verify the exploitabil-
ity of intra cache level channels against SGX secure enclaves. In fact, the attack can be
reproduced in a straightforward manner. The only difference is a slower key recovery
due to the increased measurement noise resulting from the enclave context switch.

6.1 SGX Enclave Experimental Setup and Assumptions

Following the threat model of CacheZoom [50,54], we assume that the system adver-
sary has control over various OS resources. Please note that SGXwas exactly designed
to thwart the threat of such adversaries. The adversary uses its OS-level privileges to
decrease the setup noise: We isolate one of the physical cores from the rest of the
running tasks, and dedicate its logical processors to MemJam write conflict thread
and the victim enclave. We further disable all the non-maskable interrupts on the tar-
get physical core and configure the CPU power and frequency scaling to maintain a
constant frequency. We assume that the adversary can measure the execution time of
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Fig. 18 Correlations for 6 key bytes using 5 million observations. All of the correct candidates have the
highest correlations

an enclave interface that performs encryption, and the enclave interface only returns
the ciphertext to the insecure environment. Both plaintexts and the secret encryption
key are generated at runtime using RDRAND instruction, and they never leave the
secure runtime environment of SGX enclave. The RDTSC instruction cannot be used
inside an enclave. The attacker uses it right before the call to the enclave interface and
again right after the enclave exit. As a result, the entire execution of the enclave inter-
face, including the AES encryption, is measured. As before, an active thread causing
read-after-write conflicts to the first four bytes of the AES S-Box is executed on the
neighboring virtual processor of the SGX thread.

6.2 AES Key Recovery Results on SGX

Execution of the same AES encryption function as Sect. 5.2 inside an SGX enclave
interface takes an average of 14,600 cycles with an active thread causing read-after-
write conflicts to the first four bytes of the AES S-Box. The additional overhead is
caused by the enclave context switch, which significantly increases the noise of the
timing channel due to the variable timing behavior. Having that, this experiment shows
a more practical timing behavior where adversaries cannot time the exact encryption
operation, and they have to measure the time for a batch of operations. This not only
shows that SGX is vulnerable to the MemJam attack, but it also demonstrates that
MemJam is applicable in a realistic scenario. Figure 18 shows the key correlation
results using 50 million timed encryptions in SGX, collected in 10 different time
frames. We filtered outliers, i.e. measurements with high noise by only considering
samples that are in the range of 2000 cycles of themean.Among the 50million samples,
93% pass the filtering, andwe only calculated the correlations for the remaining traces.
Figure 19 shows that we can successfully recover 14 out of 16 key bytes, revealing
sufficient information for key recovery after 20 million observations.

These results show that even cryptographic libraries designed by experts that are
fully aware of current attacks and of the leakage behavior of the target device may
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Fig. 19 The rank for correct key bytes with respect to the number of observations. Using the entire data set,
after filtering the outliers, we can recover 14 out of 16 key bytes

fail at writing non-exploitable code. Modern microarchitectures are so complex that
assumptions such as constant cache line profiles result in unexploitable constant-time
implementations are seemingly impossible to fulfill.

7 Countermeasures to Memory Leakages

In this section, we focus on countermeasures that are relevant to memory-related side
channels and their applicability to defend against MemJam attack. First, we discuss
techniques to identify and protect weak software implementations. Then, we discuss
proposed hardware defense mechanisms and attack detection methods.

7.1 Software Level Countermeasures

Constant-time implementation techniques are a known remedy to prevent memory
leakage and have already seen some adoptions by researchers and practitioners.
Indeed, the analyzed implementations of IPP all use some measures to pre-
vent memory leakages, though only at cache-line granularity. Cipher_DES and
Safe2Encrypt_RIJ128 go further by ensuring an entirely uniform access pattern
at cache-line granularity. Other crypto libraries have also adopted similar techniques,
e.g. OpenSSL uses the scatter–gather technique [16] for their implementation of RSA
[77].

Such hardened constant-time implementations are usually designed by experts who
have knowledge of the underlying architecture and side-channel domain. Attacks such
asMemJam show that uniform cache access pattern, cache state normalization [67] and
scatter–gather technique [16] fail to protect cryptographic implementations. Bitsliced
software implementations are secure against memory-related side channels and can be
applied to cryptographic schemes such as DES and AES [10]. However, this limits the
choice of efficient cryptographic schemes that are dependent on precomputed tables.
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Table access masking is another technique that has been adopted by some of the
cryptographic libraries to defend against intra-cache line leakage: The table lookup
operation visits every single element of a table and uses an index mask to discard the
irrelevant values.

Researchers have also proposed tools to automate the generation of code lacking
memory leakages: Raccoon [60] enforces constant-time control flow, but stops at
cache-line granularity and makes use of ORAM, which can be very costly. Escort
[61] and EncLang [65] also transform code to constant-time representation in compi-
lation phase. EncLang stops at page-level granularity and requires adoption of a new
programming language. Escort is not focused on efficient protection against memory
side channels and only focuses on arithmetic operations. That is, while these tools
address memory leakages, they would need further fine-tuning to also address high-
resolution attacks likeMemJamwith 4-byte spatial granularity. Limiting the resolution
to cache-level granularity still leaves the door open for CacheBleed [77] and Mem-
Jam attacks. An alternative to generating robust code is to just ensure that code does
not feature memory leakage by using analysis tools to verify constant-time properties:
MASCAT [46] is a static code analysis tool, and CacheD [70] is a dynamic symbolic
execution analyzer to detect cache leakages in software implementations. On the same
direction, Langley’s ctgrind and ct-verif [7] propose compiler-level verifica-
tion techniques. Although these identification techniques can be extended to support
an intra-cache line leakage model, there is only one proposal that practically considers
this sensitive leakage model [25].

7.2 Hardware Level Countermeasures

Known Hardware solutions to defend against cache attacks generally ignore leakages
through false dependency. Relaxed inclusion cache is a secure counterpart to the
inclusive LLC which only aims to defend LLC contention [47]. Solutions such as
CacheBar [80], Catalyst [51] and vCat [73] which isolate the LLC between different
security domains cannot be scaled to thwart theMemJam attack,which exploits leakage
in the L1 cache. Sanctum [21] is a secure processor design that uses page coloring to
isolate cache. Further, they flush the L1 and TLB cache during context switch from/to
secure enclaves. However, the effect of hyper-threading and false dependency has not
been covered in such a design. A temporary workaround to defend against this attack
is to disable hyper-threading. Ozone [9], as a zero timing leakage processor, aims to
defend against such leakages by allocating a constant computational resource to one
execution thread per core ignoring the hyper-threading model.

7.3 Attack Detection

Another approach is to detect attacks while they are happening and then react
accordingly. Proposed methods to detect cache attacks at runtime utilize hardware
performance counters [17,78] and transactional synchronization extensions (TSX)
[20,64] to detect abnormal microarchitectural behavior. Defense mechanisms based
on performance counters that monitor cache activities such as the number of cache
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misses are incapable of detectingMemJam, as the attack does not introduce any irreg-
ular cache activity. Although one might argue using other performance counters for
detection, its practicality is debatable. A monitoring agent needs to occupy an active
thread and actively evaluate the number ofmemory read stalls. In our experiments, per-
forming 50million observations takes less than aminute. If such a detector exists, it has
to monitor with a higher frequency than the attack, otherwise, it will be outperformed
before any detection of suspicious behavior is possible. The effect of read-after-write
hazards to the TSX has not been explored. However, we believe using TSX as a detec-
tor with low false-positives would not be practical, since the read-after-write hazards
are common phenomena and TSX could fail due to other issues [39]. In the SGX
world, detection of unexpected interrupts, as proposed in the literature [20], does not
apply to MemJam.

7.4 PreventingMemJam

The Cipher_DES and Safe2Encrypt_RIJ128 implementations have been
designed to achieve a constant cache access profile by ensuring that the same cache
lines are accessed every time regardless of the processed data. The 4-byte spatial reso-
lution ofMemJam, however, thwarts this countermeasure by providing intra cache-line
resolution. One approach to restore security and protect against MemJam is to apply
constant memory accesses with a 4-byte granularity. That would require accessing
every fourth byte of the table for each memory lookup for the purpose of maintaining
a uniform memory footprint. At that point, it might be easier to just do a true constant
time implementation and access all entries each time, resting assured that there is no
other effect somewhere hidden in the microarchitecture resulting in a leak with byte
granularity.

The best remedy are hardware based implementations, e.g., AES-NI or hardware
assisted implementations, e.g., SIMD-based bit-sliced implementations of AES or
SM4. If available, such performant, yet constant-time instruction set extensions should
exclusively be used to protect the targeted implementation in an efficient manner. For
ciphers where such hardware support is not available, a true constant-time implemen-
tation e.g. based on bit-slicing seems to be the best, albeit slow, alternative. Intel IPP
has different variants optimized for various generations of Intel instruction sets [43].
Intel IPP features different implementations of AES as well as SM4 in these vari-
ants. A list of these variants and implementations are given in Table 1. As shown, the
software-only variant of each of the analyzed ciphers is vulnerable to MemJam.

8 Applicability ofMemJam

MemJam exploits false dependencies of memory read-after-writes (4K Aliasing),
which was turned into a cache-based timing attack with a 4-byte spatial resolution.
This makes MemJam similar to CacheBleed, which also provides a 4 byte granular-
ity [77]. Consequently, any countermeasures aimed at providing uniform accesses at
cache-line granularity do not work, as discussed in Sect. 7. ForMemJam to work, the
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Table 1 DES, SM4 and AES implementations in all variants of Intel IPP library version 2018 [43]

Implementation Function name l9 n0 y8 k0 e9 m7 mx n8 Linux SGX SDK

DES constant-time Cipher_DES � � � N/A

AES-NI Encrypt_RIJ128_AES_NI � × × � (prebuilt)

AES Bitsliced SafeEncrypt_RIJ128 � × � � (prebuilt)

AES constant-time Safe2Encrypt_RIJ128 × � × � (source)

SM4 Bitsliced & AES-NI cpSMS4_ECB_aesni � × × N/A

SM4 cache normalized cpSMS4_Cipher � � � N/A

The variants will be merged at linker stage, each variant is optimized for a different generation of the Intel
instruction set [37]. Developers can statically link specific variants with single processor static linkingmode
[43]

Table 2 Intel processor families and availability of the leakage channels. Major Intel processors suffer from
4K Aliasing, and are vulnerable toMemJam [5]

Release Family Cache bank conflicts 4K Aliasing

2006 Core � �
2008 Nehalem × �
2011 Sandy bridge � �
2013 Silvermont, Haswell, Broadwell × �
2015 Skylake × �
2016 KabyLake × �

false dependencies need to have an impact on the read after a false conflicting write.
Table 2 highlights the availability of the cache bank conflicts and the 4KAliasing leak-
age source: While bank conflicts are limited to few CPU generations, excluding all
supporting SGX, 4K Aliasing is present in all Intel CPUs released in the last 10years.
Thus, MemJam applies to virtually all Intel CPUs that feature hyperthreading.

An adversary performing theMemJam attack also does not need to know about the
offset of an S-Box in the binary, since she can simply scan the 10-bits address entropy
by introducing conflicts to different offsets and measuring the timing of the victim. In
such a scenario, we assume that the S-Box table is aligned with the cache line size,
since an unaligned S-Box in memory is already vulnerable to cache attacks [44,58].
During the processing of an uniformly random input, each S-Box operation in an
implementation such as Safe2Encrypt_RIJ128 accesses the first word column
of the table with a probability of 1/16. Among 160 S-Box operations, an average of
10 memory accesses to the first S-Box is likely. While an attacker is causing RaW
conflicts on increasing offsets, she can locate the S-Box offset as soon as she sees a
timing behavior. This is important when it comes to obfuscated binaries or scenarios,
where the offset of the S-Box is unknown.

As shown in Table 1, all block cipher implementations of IPP feature at least one
vulnerable variant. In cases where there is an implementation based on the AES-NI
instruction set (or SSSE3 respectively), the library falls back to the basic version at
runtime if the instruction set extensions are not available. The usability of this depends
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on the compilation and runtime configuration. Developers are allowed to statically link
to a more risky variant [37], and they need to assure not to use the vulnerable versions
during linking. These ciphers should be avoided in cases where the hardware does not
provide support, e.g., Core and Nehalem do not support AES-NI; also AES-NI can be
disabled in some BIOS. For Triple DES, IPP gives only one implementation option:
the vulnerable one studied in this work. Thus, for applications that demand the use
of Triple DES (and there are still many such applications, as discussed in Sect. 5.1),
there is no secure alternative available in IPP. This highlights that current hardware
support for cryptographic primitives is restricted and if any cipher without explicit
hardware support is required, this limitation may endanger the provided security.
MemJam is another piece of evidence that modern microarchitectures are too complex
and constant-time implementations cannot simply be trusted, as assumptions about
the underlying system often turn out to be wrong.

9 Conclusion

This work proposesMemJam, a new side-channel attack based on false dependencies.
For the first time, we discovered new aspects of this side channel and its capabilities,
and show how to extract secrets from modern cryptographic implementations. Mem-
Jam uses false read-after-write dependencies to slow down accesses of the victim to a
particular 4-byte memory blockwithin a cache line. The resulting latency of otherwise
constant-time implementations was exploited with state-of-the art timing side-channel
analysis techniques. We showed how to apply the attack to recent implementations of
Triple DES, AES and SM4, as found in Intel IPP. According to the available resources,
the source of the leakage for the MemJam attack is present in all Intel CPU families
released in the last 10 years [5,39], including newest generation CPUs. Our results also
show that MemJam is a viable intra cache level attack applicable to SGX enclaves.
Prior to MemJam, it might have seemed reasonable to design SGX enclaves under
the paradigm that constant cache line accesses result in leakage-free code. However,
the increased 4-byte intra cache-line granularity of MemJam shows that only code
with true constant-time properties, i.e. constant execution flow and constant memory
accesses can be expected to have no remaining leakage on modern microarchitectures.
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