
Poster: Abstract Runtime Structure for
Reasoning about Security

Marwan Abi-Antoun Ebrahim Khalaj Radu Vanciu Ahmad Moghimi
Wayne State University, Department of Computer Science, Detroit, MI

{mabiantoun, mekhalaj, radu, amoghimi}@wayne.edu

ABSTRACT
We propose an interactive approach where analysts reason
about the security of a system using an abstraction of its
runtime structure, as opposed to looking at the code. They
interactively refine a hierarchical object graph, set security
properties on abstract objects or edges, query the graph,
and investigate the results by studying highlighted objects or
edges or tracing to the code. Behind the scenes, an inference
analysis and an extraction analysis maintain the soundness
of the graph with respect to the code.

CCS Concepts
•Software and its engineering → Object oriented ar-
chitectures;

Keywords
object graphs; ownership type inference; graph query

1. INTRODUCTION
Reasoning about quality attributes such as security re-

quires an abstraction of the system at runtime. For object-
oriented code, abstract object graphs represent how objects
communicate at runtime. However, flat object graphs con-
vey little abstraction or high-level understanding.

One powerful organizing principle in software engineering
is the notion of hierarchical decomposition. We follow this
principle of abstraction by hierarchy and organize objects
into a hierarchy. However, instead of making objects have
child objects directly, we introduce a level of indirection, a
domain, i.e., a conceptual group of objects. Domains express
hierarchy: in the graph, each object contains child domains,
and each domain in turn contains child objects. Domains are
interesting for reasoning about security because they are re-
lated to the notion of trust boundary. A private domain
expresses strict encapsulation where the owned object can-
not be accessed without going through its owner. A public
domain expresses logical containment where one object is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotSoS ’16, April 19-21, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4277-3/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2898375.2898377

1 class MutableClass {
2 private MyDate d = new MyDate();
3

4 public MyDate getDate() {
5 // v1: return alias to field
6 // return d;
7

8 // v2: return copy/clone
9 return d.clone();

10 }
11 }
12 class MyDate {
13 private Long value = new Long(0);
14

15 // ... setter/getter elided...
16

17 public MyDate clone() {
18 final MyDate copy = new MyDate();
19 // v2: shallow copy
20 // copy.setValue(this.value);
21

22 // v3: deep copy
23 Long longVal = new Long(this.value.longValue());
24 copy.setValue(longVal);
25

26 return copy;
27 }
28 }

Figure 1: Three versions of the code: v1 returns an
alias to a private field. v2 and v3 return a copy. v2
creates a shallow copy, v3 creates a deep copy.

conceptually part of another object, but is still accessible to
other objects. Domains also express precision since the ex-
traction analysis uses them to abstract the concrete, runtime
objects to pairs of types and domains.

Since object hierarchy is not directly visible in mainstream
object-oriented languages, analysts must provide richer type
information such as ownership types [2]. Requiring analysts
to manually add ownership types will not work in practice,
so there is active work in ownership type inference. Fully
automated inference can identify strict encapsulation. But
fully automated inference cannot infer the design intent of
logical containment, except for simple cases, so we rely on
analysts to express that design intent.

Instead of having analysts think in terms of ownership
types in the code, our approach enables them to think in
terms of re-grouping abstract objects or modifying parent-
child relationships, using refinement operators that move
an abstract object from one domain to another, as long as
the corresponding ownership types that typecheck can be
inferred for the code as written.

2. MOTIVATING EXAMPLE
The CERT Oracle Secure Coding Standard for Java [3] has

many rules for securing object-oriented code. For instance,
OBJ05 stipulates: Do not return references to private mu-

table class members [4]. Consider the following example to
illustrate the above rule (Fig. 1). In the MutableClass, a
non-compliant version (v1, line 6) of the method getDate()

returns an alias to the private field d of type MyDate, thus
exposing the weakness of visibility modifiers. A malicious
client can then directly mutate the object.

Our approach. Our approach promotes reasoning based on
a high-level representation, the abstract object graph, rather
than the code. The graph conveys high-level understanding,
enabling analysts to set security properties on selected ab-
stract objects, run queries, and investigate unexpected shar-
ing or communication.

For example, a tampering query checks if any object that
has the property isSanitized=false flows to any object that
has the property trustLevel=High. Here, the analysts set
the properties as follows (Fig. 2). The Long object is unsan-
itized (shown with a thick border), and the MutableClass

is trusted (shown in green). The query uses the object hi-
erarchy: it will find if a tampered object flows to a child of
the trusted destination.

Act I. The analyst runs the tool, which extracts an initial
object graph. She sets the properties as above and runs the
predefined tampering query, which highlights a problematic
edge on the first object graph (Fig. 2(b)). She then attempts
a refinement: make the MyDate owned-by the MutableClass
object. The tool, however, indicates that the code does not
support such a refinement, and which expression in the code
prevents the analysis from inferring valid types. The analyst
then traces to the code and studies the issue.

Since timestamps are used to enforce many security prop-
erties, a compliant version must return a copy or a clone of
the MyDate object (line 9). Malicious clients then mutate a
copy rather than the internal representation of the object.

Act II. The analyst fixes the code, reruns the tool, and
re-attempts the refinement, which now succeeds. The tam-
pering query, however, still shows a problematic edge on the
second object graph (Fig. 2(c)). The analyst traces to code
and investigates further. She realizes that this code is still
non-compliant since the clone() method of MyDate is re-
turning a shallow copy (v2, line 19), where both objects of
type MyDate share the same representation of type Long.

Act III. The analyst fixes the code to return a deep copy
(v3, line 22), and reruns the tool. On the third object graph
(Fig. 2(d)), the query no longer shows a problematic edge.
The abstract object c of type MutableClass receives a copy

of type MyDate, that is distinct from the object d, also of
type MyDate.

3. APPROACH OVERVIEW
We propose a multi-pronged approach for reasoning about

the security of an object-oriented system, through the inter-
active refinement, extraction, and querying of its abstract
object graph. The approach works as follows:

• Analysts use refinement operators to express their de-
sign intent related to strict encapsulation, logical con-
tainment and the grouping of objects;

• If the code supports this refinement, an inference anal-
ysis infers ownership types in the code, and saves them

o : C

object:

Type

Object

PD
Public

Domain

owned Private

Domain

points-to

dataflow

ownership

f

trusted

unsanitized

highlighted

(a) Legend.

SHARED

system:
Main

d:
MyDate

c:
MutableClass

tmprVal:
Long

tmprVal:Long

value

d:MyDate

d

(b) Alias to my
MyDate (v1).

SHARED

copy:
MyDate

system:
Main

tmprVal:
Long

c:
MutableClass

value copy:MyDate

tmprVal:Long

d

copy:MyDate

(c) Shallow copy of MyDate(v2).

SHARED

copy:
MyDate

system:
Main

tmprVal:
Long

value

tmprVal:Long

owned

c:
MutableClass

owned

d:
MyDate

d

value:
Long

tmprVal:Long

copy:MyDate

value

(d) Deep copy of MyDate (v3).

Figure 2: Object graphs extracted from the code.

as annotations;
• Based on these inferred types and annotations, a static

analysis extracts from the code an updated hierarchical
abstract object graph, which can be refined further;

• Analysts set properties, set arguments to queries, and
investigate the query results.

We discuss briefly each part in turn.

Interactive refinement. A user interface supports refine-
ments by direct manipulation of the object tree or the object

DS
DS.Main
DS.DS.MyDate
DS.DS.MutableClass
DS.DS.java.lang.Long
DS
DS.DS.MyDate
DS.Main
DS.DS.java.lang.Long
DS.DS.MutableClass
DS
DS.DS.MyDate
DS.Main
DS.DS.java.lang.Long
owned
owned.owned.MutableClass
owned1
owned1.owned.MyDate
owned1.owned1.java.lang.Long

Figure 3: Screenshot of the web-based interface: each panel (labeled A–F) is explained in Section 4.

graph. For example, the analyst can push an object under-
neath another object in the object tree using drag-n-drop
operations. For example, the analyst makes the object d

of type MyDate owned-by the object of type MutableClass.
The list of refinements contains valuable design intent and
can be replayed on evolving versions of the system.

Inference static analysis. Given a refinement as input,
the inference analysis either infers valid ownership types thus
confirming that the refinement is well-formed. Conversely,
the analysis fails to infer valid types showing that the re-
finement is infeasible for the code, and identifying the prob-
lematic expressions for which it cannot infer valid types. If
the analysts insist on that refinement, they must change the
code and re-run the tool.

Extraction static analysis. From the code with the in-
ferred types, the extraction static analysis [1] extracts a hi-
erarchical abstract object graph that shows two types of
node: abstract objects and domains. Several edge types can
be shown including points-to and data-flow.

Querying of object graph. Analysts select abstract ob-
jects or edges, assign them properties, set the arguments to
several possible predefined queries and investigate the re-
sults, by tracing to the corresponding lines of code [5].

The properties are displayed graphically. These properties
are tied to abstract objects and can be reused across evolving
versions of the system.

4. CONTRIBUTION
This poster presents a web-based user interface that inte-

grates these above analyses into a tool for analysts (Fig. 3):
• Object Tree (panels A-B): analysts request refine-

ments by direct manipulation (drag-and-drop) in the
object tree. The list of refinements and their status is
below the tree (panel B);

• Code Display (panel C): analysts trace from se-

lected nodes or edges to the code and investigate high-
lighted edges identified by the queries;

• Graph Display (panel D): the object graph can
be displayed as either a graph of objects and domains
(Fig. 2(d)) or as nested boxes (middle of Fig. 3). The
graphs in Fig. 2(d) are available under theObject Graph

tab. Analysts can select nodes directly on the graph;
• Property Editor (panel E): edit the values of prop-

erties on selected objects or edges such as isConfiden-
tial or trustLevel ;

• Query Builder (panel F): analysts select the source,
intermediate, and destination objects, by clicking on
the graph, then invoke a query from a list of pre-
defined queries. Query results are shown as highlighted
objects or edges on the graphs (panel D). Predefined
queries for Information Disclosure and Tampering re-
quire that only properties be set.

Funding. This work is supported in part by the National
Security Agency lablet contract #H98230-14-C-0140.

5. REFERENCES
[1] M. Abi-Antoun and J. Aldrich. Static Extraction and

Conformance Analysis of Hierarchical Runtime
Architectural Structure using Annotations. In
OOPSLA, 2009.

[2] J. Aldrich and C. Chambers. Ownership Domains:
Separating Aliasing Policy from Mechanism. In
ECOOP, 2004.

[3] F. Long, D. Mohindra, R. C. Seacord, D. F.
Sutherland, and D. Svoboda. The CERT Oracle Secure

Coding Standard for Java. Addison-Wesley, 2011.

[4] SEI CERT Oracle Coding Standard for Java, 2016.
www.securecoding.cert.org/confluence/display/java/.

[5] R. Vanciu and M. Abi-Antoun. Finding architectural
flaws using constraints. In ASE, 2013.

