
MemJam : A False Dependency Attack
Against Constant-Time Crypto

Implementations in SGX

Ahmad Moghimi1(B) , Thomas Eisenbarth1,2(B) , and Berk Sunar1(B)

1 Worcester Polytechnic Institute, Worcester, MA, USA
{amoghimi,teisenbarth,sunar}@wpi.edu
2 University of Lübeck, Lübeck, Germany

Abstract. Cache attacks exploit memory access patterns of cryp-
tographic implementations. Constant-Time implementation techniques
have become an indispensable tool in fighting cache timing attacks. These
techniques engineer the memory accesses of cryptographic operations
to follow a uniform key independent pattern. However, the constant-
time behavior is dependent on the underlying architecture, which can be
highly complex and often incorporates unpublished features. CacheBleed
attack targets cache bank conflicts and thereby invalidates the assump-
tion that microarchitectural side-channel adversaries can only observe
memory with cache line granularity. In this work, we propose MemJam,
a side-channel attack that exploits false dependency of memory read-
after-write and provides a high quality intra cache level timing channel.
As a proof of concept, we demonstrate the first key recovery attacks on a
constant-time implementation of AES, and a SM4 implementation with
cache protection in the current Intel Integrated Performance Primitives
(Intel IPP) cryptographic library. Further, we demonstrate the first intra
cache level timing attack on SGX by reproducing the AES key recovery
results on an enclave that performs encryption using the aforementioned
constant-time implementation of AES. Our results show that we can not
only use this side channel to efficiently attack memory dependent crypto-
graphic operations but also to bypass proposed protections. Compared to
CacheBleed, which is limited to older processor generations, MemJam is
the first intra cache level attack applicable to all major Intel processors
including the latest generations that support the SGX extension.

1 Introduction

In cryptographic implementations, timing channels can be introduced by key
dependent operations, which can be exploited by local or remote adver-
saries [15,46]. Modern microarchitectures are complex and support various
shared resources, and the operating system (OS) maximizes the resource shar-
ing among concurrent tasks [43,48]. From a security standpoint, concurrent
tasks with different permissions share the same hardware resources, and these
resources can expose exploitable timing channels. A typical model for exploiting
c© Springer International Publishing AG, part of Springer Nature 2018
N. P. Smart (Ed.): CT-RSA 2018, LNCS 10808, pp. 21–44, 2018.
https://doi.org/10.1007/978-3-319-76953-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76953-0_2&domain=pdf
http://orcid.org/0000-0002-3123-5916
http://orcid.org/0000-0003-1116-6973

22 A. Moghimi et al.

microarchitectural timing channels is for a spy process to cause resource con-
tention with a victim process and to measure the timing of its own or of the
victim operations [2,36,47,49]. The observed timing behavior give adversaries
strong evidence on the victim’s resource usage pattern, thus they leak critical
runtime data. Among the shared resources, attacks on cache have received sig-
nificant attention, and their practicality have been demonstrated in scenarios
such as cloud computing [24,28,36,47,58,61]. A distinguishable feature of cache
attacks is the ability to track memory accesses with high temporal and spatial
resolution. Thus, they excel at exploiting cryptographic implementations with
secret dependent memory accesses [9,27,46,50]. Examples of such vulnerable
implementations include using S-Box tables [53], and efficient implementations
of modular exponentiation [39].

The weakness of key dependent cache activities has motivated researchers and
practitioners to protect cryptographic implementations against cache attacks
[12,49]. The simplest approach is to minimize the memory footprint of lookup
tables. Using a single 8-Bit S-Box in Advanced Encryption Standard (AES)
rather than T-Tables makes cache attacks on AES inefficient in a noisy envi-
ronment, since the adversary can only distinguish accesses between 4 different
cache lines. Combining small tables with cache state normalization, i.e., load-
ing all table entries into cache before each operation, defeats cache attacks in
asynchronous mode, where the adversary is only able to perform one observa-
tion per operation. More advanced side channels such as exploitation of the
thread scheduler [26], cache attack on interrupted execution of Intel Software
Guard eXtension (SGX) [44], performance degradation [6] and leakage of other
microarchitectural resources [1,3] remind us the importance of constant-time
software implementations. One way to achieve constant-time memory behavior,
is the adoption of small tables in combination with accessing all cache lines on
each lookup [49]. The overhead would be limited and is minimized by the par-
allelism we can achieve in modern processors. Another constant-time approach
adopted by some public cryptographic schemes is interleaving the multipliers in
memory known as scatter-gather technique [13].

Constant-time implementations have effectively eliminated the first genera-
tion of timing attacks that exploit obvious key dependent leakages. The common
view is that performance penalty is the only downside which, once paid, there is
no need to be further worried. However, this is far from the reality and constant-
time implementations may actually give a false sense of security. A commonly
overlooked fact is that constant-time implementations and related protections
are relative to the underlying hardware [22]. In fact, there are major obstacles
preventing us from obtaining true constant-time behavior. Processors constantly
evolve with new microarchitectural features rolled quietly with each new release
and the variety of such subtle features makes comprehensive evaluation impossi-
ble. A great example is the cache bank conflicts attack on OpenSSL RSA scatter-
gather implementation: it shows that adversaries with intra cache level resolution
can successfully bypass constant-time techniques relied on cache-line granularity
[59]. As a consequence, what might appear as a perfect constant-time implemen-
tation becomes insecure in the next processor release–or worse–an unrecognized
behavior might be discovered, invalidating the earlier assumption.

MemJam: A False Dependency Attack 23

1.1 Our Contribution

We propose an attack named MemJam by exploiting false dependency of mem-
ory read-after-write, and demonstrate key recovery against two different cryp-
tographic implementations which are secure against cache attacks with experi-
mental results on both regular and SGX environments. In summary:

– False Dependency Attack: A side-channel attack on the false dependency
of memory read-after-write. We show how to dramatically slow down the
victim’s accesses to specific memory blocks, and how this read latency can be
exploited to recover low address bits of the victim’s memory accesses.

– Attack on protected AES and SM4: Attacks utilizing the intra cache
level information on AES and SM4 implementations protected against cache
attacks. The implementations are chosen from Intel Integrated Performance
Primitives (Intel IPP), which is optimized for both security and speed.

– Attack on SGX Enclave: The first intra cache level attack against SGX
Enclaves supported by key recovery results on the constant-time AES imple-
mentation. The aforementioned constant-time implementation of AES is part
of the SGX SDK source code.

– Protection Bypass: Bypasses of remarkable protections such as proposals
based on constant-time techniques [13,49], static and runtime analysis [37,60]
and cache architecture [17,38,42,55].

1.2 Experimental Setup and Generic Assumptions

Our experimental setup is a Dell XPS 8920 desktop machine with Intel(R) Core
i7-7700 processor running Ubuntu 16.04. The Core i7-7700 has 4 hyper-threaded
physical cores. Our only assumptions are that the attacker is able to co-locate
on one of the logical processor pairs within the same physical core as the vic-
tim. In the cryptographic attacks, the attacker can measure the time of victim
encryption. The attacker further knows which cryptographic implementation is
used by the victim, but she does not need to have any knowledge of the victim’s
binary or the offset of the S-Box tables. We will discuss assumptions that are
specific to the attack on SGX at Sect. 6.

2 Related Work

Side channels including power, electromagnetic and timing channels have
been studied for a few decades [15,16,40]. Timing side channels can be con-
structed through the processor cache to perform key recovery attacks against
cryptographic operations such as RSA [27], ECDSA [9], ElGamal [61], DES [50]
and AES [36,46]. On multiprocessor systems, attacks on the shared LLC—a
shared resource among all the cores—perform well even when attacker and vic-
tim reside in different cores [36]. Flush+Reload, Prime+Probe, Evict+Reload,
and Flush+Flush are some of the proposed attack methodologies with different
adversarial scenarios [24,46,58]. Performance degradation attacks can improve

24 A. Moghimi et al.

the channel resolution [6,26]. LLC attacks are highly practical in cloud, where
an attacker can identify where a particular victim is located [47,61]. Despite the
applicability of LLC attacks, attacks on core-private resources such as L1 cache
are as important [1,10]. Attacks on SGX in a system level adversarial scenario
are notable examples [41,44]. There are other shared resources, which can be
utilized to construct timing channels [21]. Exploitation of Branch Target Buffer
(BTB) leaks if a branch has been taken by a victim process [1,3,41]. Logical
units within the processor can leak information about the arithmetic opera-
tions [4,7]. CacheBleed proposes cache bank conflicts and false dependency of
memory write-after-read as side channels with intra-cache granularity [59]. How-
ever, cache bank conflicts leakage does not exist on current Intel processors, and
we verify the authors’ claim that the proposed write-after-read false dependency
side channel does not allow efficient attacks.

Defense software and hardware strategies have been proposed such as alter-
native lookup tables, data-independent memory access pattern, static or dis-
abled cache, and cache state normalization to defend against cache attacks [49].
Scatter-Gather techniques have been adopted by RSA and ECC implementa-
tions [13]. In particular, introducing redundancy and randomness to the S-Box
tables for AES has been proposed [12]. A custom memory manager [62], relaxed
inclusion caches [38] and solutions based on cache allocation technology (CAT)
such as Catalyst [42] and vCat [55] are proposed to defend against LLC con-
tention. Sanctum [17] and Ozone [8] are new processor designs with respect to
cache attacks. Detection-based countermeasures have also been proposed using
performance counters, which can be used to detect cache attacks in cloud envi-
ronments [14,60]. MASCAT [37] is proposed to block cache attacks with code
analysis techniques. CachD [52] detects potential cache leakage in the produc-
tion software. Nonetheless, these proposals assume that the adversary cannot
distinguish accesses within a cache line. That is, attacks with intra cache-line
granularity are considered out-of-scope. Doychev and Köpf proposed the only
software leakage detector that consider full address bits as its leakage model [20].

3 Background

Multitasking. The memory management subsystem shares the dynamic
random-access memory (DRAM) among all concurrent tasks, in which a virtual
memory region is allocated for each task transparent to the physical memory.
Each task is able to use its entire virtual address space without meddling of mem-
ory accesses from others. Memory allocations are performed in pages, which each
virtual memory page can be stored in a DRAM page with a virtual-to-physical
page mapping. The logical processors are also shared among these tasks and each
logical processor executes instructions from one task at a time, and switches to
another task. Memory write and read instructions work with virtual addresses,
and the virtual address is translated to the corresponding physical address to
perform the memory operation. The OS is responsible for page directory man-
agement and virtual page allocation. The OS assists the processor to perform

MemJam: A False Dependency Attack 25

virtual-to-physical address translation by performing an expensive page walk.
The processor saves the address translation results in a memory known as Trans-
lation Look-aside Buffer (TLB) to avoid the software overhead introduced by the
OS. Intel microarchitecture follows a multi-stage pipeline and adopts different
optimization techniques to maximize the parallelism and multitasking during the
pipeline stages [29]. Among these techniques, hyper-threading allows each core
to run multiple concurrent threads, and each thread shares all the core-private
resources. As a result, if one resource is busy by a thread, other threads can
consume the remaining available resources. Hyper-threading is abstracted to the
software stack: OS and applications interact with the logical processors.

Cache Memory. DRAM memory is slow compared to the internal CPU compo-
nents. Modern microarchitectures take advantage of a hierarchy of cache mem-
ories to fill the speed gap. Intel processors have two levels of core-private cache
(L1, L2), and a Last Level Cache (LLC) shared among all cores. The closer the
cache memory is to the processor, the faster, but also smaller it is compared to
the next level cache. Cache memory is organized into different sets, and each set
can store some number of cache lines. The cache line size, which is 64 byte, is the
block size for all memory operations outside of the CPU. The higher bits of the
physical address of each cache line is used to determine which set to store/load
the cache line. When the processor tries to access a cache line, a cache hit or miss
occurs respective of its existence in the relevant cache set. If a cache miss occurs,
the memory line will be stored to all 3 levels of cache and to the determined
sets. Reloads from the same address would be much faster when the memory line
exists in cache. In a multicore system, the processor has to keep cache consistent
among all levels. In Intel architecture, cache lines follow a write-back policy, i.e.,
if the data in L1 cache is overwritten, all other levels will be updated. The LLC
is inclusive of L2 and L1 caches, which means that if a cache line in LLC is
evicted, the corresponding L1 and L2 cache lines will also be evicted [29]. These
policies help to avoid stale cached data where one processor reads invalid data
mutated by another processor.

L1 Cache Bottlenecks. L1 cache port has a limited bandwidth and simultane-
ous accesses will be block each other. This bottleneck is critical in super-scalar
multiprocessor systems. Older processors’ generation adopted multiple banks as
a workaround to this problem [5], in which each bank can operate independently
and serve one request at a time. While this partially solved the bandwidth limit,
it creates the cache bank conflicts phenomena which simultaneous accesses to
the same bank will be blocked. Intel resolved the cache bank conflicts issue with
the Haswell generation [29]. Another bottleneck mentioned in various resources
is due to the false dependency of memory addresses with the same cache set and
offset [5,29]. Simultaneous read and write with addresses that are multiples of
4 kB is not possible, and they halt each other. The processor cannot determine
the dependency from the virtual address, and addresses with the same last 12
bits have the chance to map to the same physical address. Such simultaneous
access can happen between two logical processors and/or during the out-of-order
execution, where there is a chance that a memory write/read might be dependent

26 A. Moghimi et al.

on a memory read/write with the same last 12 bits of address. Such dependencies
cannot be determined on the fly, thus they cause latency.

Cache Attacks. Cache attacks can be exploited by adversaries where they share
system cache memory with benign users. In scenarios where the adversary can
colocate with a victim on the same core, she can attack core-private resources
such as L1 cache, e.g., OS adversaries [41,44]. In cloud environment, virtual-
ization platforms allow sharing of logical processors to different VMs; however,
attacks on the shared LLC have a higher impact, since LLC is shared across
the cores. In cache timing attacks, the attacker either measure the timing of
the victim operations, e.g., Evict+Time [46] or the timing of his own memory
accesses, e.g., Prime+Probe [36]. The attacker needs to have access to an accu-
rate time resource such as the RDTSC instruction. In the basic form, attacks are
performed by one observation per entire operation. In certain scenarios, these
attacks can be improved by interrupting the victim and collecting information
about the intermediate memory states. Side-channel attacks exploiting cache
bank conflicts rely on synchronous resource contention. CacheBleed methodol-
ogy is somewhat similar to Prime+Probe, where the attacker performs repeated
operations, and measures it’s own access time [59]. In a cache bank conflicts
attack, the adversary repeatedly performs simultaneous reads to the same cache
bank and measures their completion time. A victim on a colocated logical pro-
cessor who access the same cache bank would cause latency to the attacker’s
memory reads.

4 MemJam : Read-After-Write Attack

MemJam utilizes false dependencies. Data dependency occurs when an instruc-
tion refers to the data of a preceding instruction. In pipelined designs, hazards
and pipeline stalls can occur from dependencies if the previous instruction has
not finished. There are cases where false dependencies occur, i.e. the pipeline
stalls even though there is no true dependency. Reasons for false dependencies
are register reuse and limited address space for the Arithmetic Logic Unit (ALU).
False dependencies degrade instruction level parallelism and cause overhead. The
processor eliminates false dependencies arising from register reuse by a register
renaming approach. However, there exist other false dependencies that need to
be addressed during the software optimization [29,30].

In this work, we focus on a critical false dependency mentioned as 4K Alias-
ing where data that is multiples of 4k apart in the address space is seen as
dependent. 4k Aliasing happens due to virtual addressing of L1 cache, where
data is accessed using virtual addresses, but tagged and stored using physical
addresses. Multiple virtual addresses can refer to the same data with the same
physical address and the determination of dependency for concurrent memory
accesses, requires virtual address translation. Physical and virtual address share
the last 12 bits, and any data accesses whose addresses differ in the last 12 bits
(i.e. the distance is not 4k) cannot have a dependency. For the fairly rare remain-
ing cases, address translation needs to be done before resolving the dependency,

MemJam: A False Dependency Attack 27

loop :
rdtscp ;
mov %eax , (%r9) ;
movb 0x0000(%r10) , %a l ;
movb 0x1000(%r10) , %a l ;
movb 0x2000(%r10) , %a l ;
movb 0x3000(%r10) , %a l ;
movb 0x4000(%r10) , %a l ;
movb 0x5000(%r10) , %a l ;
movb 0x6000(%r10) , %a l ;
movb 0x7000(%r10) , %a l ;
add $4 , %r9 ;
dec %r11 ;
jnz loop ;

Listing 1. Probe Reads

loop :
rdtscp
mov %eax , (%r9) ;
movb %al , 0x0000(%r10) ;
movb %al , 0x1000(%r10) ;
movb %al , 0x2000(%r10) ;
movb %al , 0x3000(%r10) ;
movb %al , 0x4000(%r10) ;
movb %al , 0x5000(%r10) ;
movb %al , 0x6000(%r10) ;
movb %al , 0x7000(%r10) ;
add $4 , %r9
dec %r11
jnz loop

Listing 2. Probe Writes

Listings 1 and 2 are used to probe 8 parallel reads
and writes, respectively. r9 points to a measure-
ment buffer, and r11 is initialized with the probe
count.

Fig. 1. Based on the
attack model, thread A
and B both run on the
same core, and intro-
duce and probe stall
hazards.

which causes latency. Note that the granularity of the potential dependency, i.e.
whether two addresses are considered “same”, depends also on the microarchi-
tecture, as dependencies can occur at the word or cache line granularity (i.e.
ignoring the last 2 or last 6 bits of the address, respectively). These rare false
dependencies due to 4K aliasing can be exploited to attack memory, since the
attacker can deliberately process falsely dependent data by matching the last 12
bits of his own address with a security critical data inside a victim process.

4K Aliasing has been mentioned in various places as an optimization prob-
lem existing on all major Intel processors [5,29]. We verify the results of Yarom
et al. [59], the only security related work regarding false dependencies, which
exploited write-after-read dependencies. The resulting timing leakage by write
stall after read is not sufficient to be used in any cryptographic attack. MemJam
exploits a different channel due to the false dependency of read-after-write, which
causes a higher latency and is thus simply observable. Intel Optimization Man-
ual highlights the read-after-write performance overhead in various sections [29].
As described in Sect. 11.8, this hazard occurs when a memory write is closely
followed by a read, and it causes the read to be reissued with a potential 5 cycles
penalty1. In Sect. B.1.4 on memory bounds, write operations are treated under
the store bound category. In contrast to load bounds, Top-down Microarchitec-
ture Analysis Method (TMAM)2 reports store bounds as fraction of cycles with
low execution port utilization and small performance impact. These descriptions
in various sections highlight that read-after-write stall is considered more critical
than write-after-read stall.

1 LD BLOCKS PARTIAL.ADDRESS ALIAS Performance Monitoring Unit (PMU) event
counts the number of times reads were blocked.

2 Top-Down Characterization is a hierarchical organization of event-based metrics that
identifies the dominant performance bottlenecks in an application.

28 A. Moghimi et al.

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2 106

Non-conflicted CL
mean(Non-conflicted CL)
Conflicted CL
mean(Conflicted CL)
Conflicted Offset
mean(Conflicted Offset)

(a) RaR
20 40 60 80 100 120 140 160
0

0.5

1

1.5

2 106

Non-conflicted CL
mean(Non-conflicted CL)
Conflicted CL
mean(Conflicted CL)
Conflicted Offset
mean(Conflicted Offset)

(b) WaR
20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2 106

Non-conflicted CL
mean(Non-conflicted CL)
Conflicted CL
mean(Conflicted CL)
Conflicted Offset
mean(Conflicted Offset)

(c) RaW

Fig. 2. Three different scenario where different cache line (green), same cache line
(blue) and same offset (red) have been accessed by two logical processors. Experiment
(c) on RaW latency has distinguishable characteristics for the conflicted word offset
(red), while (a) and (b) feature nimble differences. (Color figure online)

4.1 Memory Dependency Fuzz Testing

We performed a set of experiments to evaluate the memory dependency behavior
between two logical processors. In these experiments, we have thread A and B
running on the same physical core, but on different logical processors, as shown
in Fig. 1. Both threads perform memory operations; only thread B measures its
timing and hence the timing impact of introduced false dependencies.

Read-after-read (RaR): In the first experiment, the two logical threads A and
B read from the same shared cache and can potentially block each other. This
experiment can reveal cache bank conflicts, as used by CacheBleed [59]. B uses
Listing 1 to perform read measurements and A constantly reads from different
memory offsets and tries to introduce conflicts. A reads from three different type
of offsets: (1) Different cache line than B, (2) same cache line, but different offset
than B, and (3) same cache line and same offset as B. As depicted, there is no
obvious difference between the histograms for three cases in Fig. 2a verifying the
lack of cache bank conflicts on 7th generation CPUs.

Write-after-read (WaR): The histogram results for the second experiment
on false dependency of write-after-read is shown in Fig. 2b, in which the cache
line granularity is obvious. Thread A constantly reads from different type of
memory offsets, while thread B uses Listing 2 to perform write measurements.
The standard deviation for conflicted cache line (blue) and conflicted offset (red)
between thread A and B is distinguishable from the green bar where there is no
cache line conflict. This shows a high capacity cache granular behavior, but the
slight difference between conflicted line and offset verifies the previous results
stating a weak offset dependency [59].

Read-after-write (RaW): Figure 2c shows an experiment on measuring false
dependency of read-after-write, in which, thread A constantly writes to differ-
ent memory offsets. Thread B uses Listing 1 to perform read measurements.
Accesses to three different types of offsets are clearly distinguishable. The con-
flicted cache line accesses (blue) are distinguishable from non-conflicted accesses
(green). More importantly, conflicted accesses to the same offset (red) are also
distinguishable from conflicted cache line accesses, resulting in a side channel

MemJam: A False Dependency Attack 29

20 30 40 50 60 70 80 90
0

0.5

1

1.5

2 106

Non-conflicted CL
mean(Non-conflicted CL)
Conflicted CL
mean(Conflicted CL)
Conflicted Offset
mean(Conflicted Offset)

Fig. 3. RawW: Compared to Fig. 2c,
this shows a lower impact on access
latency.

10 20 30 40 50 60
Conflicted Read

210

215

220

225

230

235

240

245

250

255

260

C
yc

le

Fig. 4. The cycle count for mixed opera-
tions with RaW conflicts. More conflicts
cause higher delay.

with intra cache-line granularity. There is an average of 2 cycle penalty if the
same cache line has been accessed, and a 10 cycle penalty if the same offset has
been accessed. Note that the word offsets in our platform have 4 byte granular-
ity. From an adversarial standpoint, this means that an adversary learns about
bits 2–11 of the victim memory access, in which 4 bits (bits 2–5) are related to
intra cache-line resolution, and thus goes beyond any other microarchitectural
side channels known to exist on 6th and 7th generation Intel processors (Fig. 5).

Read-after-weak-Write (RawW): In this experiment on the read-after-write
conflicts, we followed a less greedy strategy on the conflicting thread. Rather
than constantly writing to the same offset, A executes write instructions to the
same offset with some gaps filled with other memory accesses and instructions.
As shown in Fig. 3, the channel dramatically became less effective. This tells
us that causing read access penalty will be more effective with constant writes
to the same offset without additional instruction. In this regard, we will use
Listing 3 in our attack to achieve the maximum conflicts.

Read-after-Write Latency: In the last experiment, we tested the delay of
execution over a varying number of conflicting reads. We created a code stub that
includes 64 memory read instructions and a random combination of instructions
between memory reads to create a more realistic computation. The combination
is chosen in a way to avoid unexpected halts and to maintain the parallelism of all
read operations. We measure the execution time of this computation on B, while
A is writing to a conflicting offset. First, we measured the computation with 64
memory reads to addresses without conflicts. Our randomly generated code stub
takes an average of 210 cycles to execute. On each step of the experiments, as
shown in Fig. 4, we change some of the memory offsets to have the same last 12
bits of address as of A’s conflicting write offset. We observe a growth on read
accesses’ latency by increasing the number of conflicting reads. Figure 4 shows
the results for a number of experiments. In all of them, the overall execution
time of B is strongly dependent on the number of conflicting reads. Hence, we
can use the RaW dependency to introduce strong timing behavior using bits
2–11 of a chosen target memory address.

30 A. Moghimi et al.

Fig. 5. Intra cache level leakage: Mem-
Jam latency is related to 10 address
bits, in which 4 bits are intra cache level
bits.

mov %[t a r g e t] , %rax ;
w r i t e l o op :

. r ept 100 ;
movb $0 , (%rax) ;
. endr ;

jmp wr i t e l o op ;

Listing 3. Write Conflict Loop: Unneces-
sarily instructions are avoided to minimize
usage of other processor units and to max-
imize the RaW conflict effect.

5 MemJam Correlation Attack

MemJam uses read-after-write false dependencies to introduce timing behav-
ior to otherwise constant-time implementations. The resulting latency is then
exploited using a correlation attack. MemJam proceeds with the following steps:

1. Attacker launches a process constantly writing to an address using Listing 3
where the last 12 bits match the virtual memory offset of a critical data that
is read in the victim’s process.

2. While the attacker’s conflicting process is running, attacker queries the victim
for encryption and records a ciphertext and execution time pair of the victim.
Higher time infers more accesses to the critical offset.

3. Attacker repeats the previous step collecting ciphertext and time pairs.

The attack methodology resembles the Evict+Time strategy originally pro-
posed by Tromer et al. [49], except that the attacker uses false dependencies
rather than evictions to slow down the target and that the slowdown only applies
to an 4-byte block of a cache line. Furthermore, all of the victim’s accesses
addresses with the same last 12 bits are slowed down while an eviction only
slows the first memory access(es).

Based on the intra cache level leakage in Fig. 5, we divide a 64 byte cache
line into 4-byte blocks and hypothesize that the access counts to a block are
correlated with the running time of victim, while the attacker jams memory reads
to that block, i.e., the attacker expects to observe a higher time when there are
more accesses by the victim to the targeted 4-byte block and lower time when
there are lower number of accesses. Based on this hypothesis, we apply a classical
correlation based side-channel approach [40] to attack implementations of two
different block ciphers, namely AES and SM4, a standard cipher. SM4 among
AES, Triple DES, and RC4 are the only available symmetric ciphers as part
of Intel’s IPP crypto library [34]3. Both implementations have optimizations to
hinder cache attacks. In fact, the AES implementation features a constant cache
profile and can thus be considered resistant to most microarchitectural attacks
including cache attacks and high-resolution attacks as described in [44]. MemJam
can still extract the keys from both implementations due to the intra cache-line
spatial resolution as depicted in Fig. 5. We describe the targeted implementations
next, as well as the correlation models we use to attack them.
3 Patents investigated by Intel verify the importance of SM4 [25,54,57].

MemJam: A False Dependency Attack 31

Fig. 6. Constant-time table lookup used by Intel IPP: each lookup preloads 4 values to
a cache aligned buffer, thus it accesses all the 4 S-Box cache lines. The actual output
will be chosen from the buffer using the high address bits.

5.1 Attack 1: IPP Constant-Time AES

AES is a cipher based on substitution permutation network (SPN) with 10
rounds supporting 128-bit blocks and 128/192/256-bit keys [18]. The SubBytes is
a security-critical operation and the straightforward way to implement AES Sub-
Bytes operation efficiently in software is to use lookup tables. SubBytes operates
on each byte of cipher state, and it maps an 8-bit input to an 8-bit output using
a non-linear function. A precomputed 256 byte lookup table known as S-Box
can be used to avoid recomputation. There are efficient implementations using
T-Tables that output 32-bit states and combine SubBytes and MixColumns oper-
ations. T-Table implementations are highly vulnerable to cache attacks. During
AES rounds, a state table is initiated with the plaintext, and it holds the inter-
mediate state of the cipher. Round keys are mixed with states, which are critical
S-Box inputs and the main source of leakage. Hence, even an adversary who can
partially determine which entry of the S-Box has been accessed is able to learn
some information about the key.

Among the efforts to make AES implementations more secure against cache
attacks, Safe2Encrypt RIJ128 function from Intel IPP cryptographic library
is noteworthy. This implementation is the only production-level AES software
implementation that features true cache constant-time behavior and does not
utilize hardware extensions such as AES-NI or SSSE3 instruction sets. This
implementation is also part of the Linux SGX SDK [32] and can be used for
production code if the SDK is compiled from the scratch, i.e., it does not use
prebuilt binaries. We verified the match between the implementation in Intel
IPP binary and SGX SDK source code through reverse engineering. This imple-
mentation follows a very simple direction: (1) it implements AES using 256 byte
S-Box lookups without any optimization such as T-Tables, (2) instead of access-
ing a single byte of memory on each S-Box lookup, it fetches four values from
the same vertical column of 4 different cache lines and saves them to a local
cache aligned buffer, finally, (3) It performs the S-Box replacement by picking
the correct S-Box entry from the local buffer. This implementation is depicted
in Fig. 6. This implementation protects AES against any kind of cache attacks,
as the attacker sees a constant cache access pattern: The S-Box table only occu-

32 A. Moghimi et al.

0 50 100 150 200 250
Key Candidates

0

0.005

0.01

0.015

0.02

0.025
O

bs
er

ve
d

C
or

re
la

tio
ns

0

0.01

0.02

0.03

0.04

Ex
pe

ct
ed

 C
or

re
la

tio
ns

Fig. 7. Linearity of the number of accesses to the first block and the execution time
of AES: The synthetic correlation and MemJam observed correlation show similar
behavior with slight difference due to the added noise. (Color figure online)

pies 4 cache lines, and on each SubBytes operation, all of them will sequentially
be accessed. This implementation can be executed in less than 2000 cycles on
a recent laptop processor. This is fast enough for many cryptographic applica-
tions, and it provides full protection against cache attacks, even if the attacker
can interrupt the execution pipeline.

Based on MemJam 4-byte granular leakage channel, and the design of AES,
we can create a simple correlation model to attack this implementation. The
accessed table index of the last round for a given ciphertext byte c and key byte
k is given as index = S−1(c ⊕ k). We define matrix A for the access profile
where each row corresponds to a known ciphertext, and each column indicates
the number of accesses when index < 4. While we assume that the attacker
causes slow-downs to the first 4-byte block of S-Box, we define matrix L for
leakage where each row corresponds to a known ciphertext and each column
indicates the victim’s encryption time. Then our correlation attack is defined as
the correlation between A and L, in which the higher the number of accesses,
the higher the running time. Our results will verify that correlation is high, even
though the implementation has dummy accesses to the monitored block. These
can be ignored as noise, slightly reducing our maximum achievable correlation.

AES Key Recovery Results on Synthetic Data: We first verified the cor-
rectness of our correlation model on synthetic data using a noise free leakage
(generated by PIN [33]). For each of the 16 key bytes using a vector that matches
exactly to the number of accesses to the targeted block of S-Box for different
ciphertexts, all the correct key bytes will have the highest correlation after 32,000
observations with the best and worst correlations of 0.046 and 0.029 respectively.

AES Key Recovery Results using MemJam: Relying on the verification
of Synthetic Data, we plugged in the real attack data vector, which consists of
pairs of ciphertext and time measured through repeated encryption of unknown
data blocks. Results on AES show that we can effectively exploit the timing
information, and break the so-called constant-time implementation. The victim
execution of AES encryption function takes about 1700 and 2000 cycles without
and with an active thread on the logical processor pair, respectively. The target
AES implementation performs 640 memory accesses to the S-Box, including
dummy accesses. If the spy thread constantly writes to any address that collides

MemJam: A False Dependency Attack 33

0 50 100 150 200 250
Key Candidates

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
C

or
re

la
tio

n

Key Byte 1
Key Byte 5
Key Byte 7
Key Byte 9

Fig. 8. Correlations for 4 key bytes
using 2 million observations. Correct
key byte candidates have the highest
correlations.

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

11
00

00
0

12
00

00
0

13
00

00
0

14
00

00
0

15
00

00
0

16
00

00
0

17
00

00
0

18
00

00
0

19
00

00
0

20
00

00
0

Observations

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Ke
y

By
te

s
(R

an
ks

)

1

1
1
1
3
1
4
1

69
1

15
7
6

24
15

1
34
1
1
1
3
1
6
1
3
3
8
1
9
5
1

1
42
1
1
1
1
1
3
1
2
1

13
1
7
2
1

1
12
1
1
1
1
1
1
1
1
2
1
1
4
4
1

1
3
1
1
1
1
1
1
1
2
3
1
1
2
3
1

1
3
1
1
1
1
1
1
1
1
1
1
1
8
7
1

1
1
1
1
1
1
1
1
1
1
1
1
1
4

12
1

1
1
1
1
1
1
1
1
1
1
1
1
1
3

26
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

26
1

1
1
1
1
1
1
1
1
1
1
1
1
1
3

43
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

43
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

57
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

36
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

14
1

1
1
1
1
1
1
1
1
1
1
1
1
1
2

11
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

13
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

21
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

16
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

12
1

20

40

60

80

Fig. 9. The rank for correct key bytes
are reduced with more observation. After
2 million observations, 15 out of 16 key
bytes are recovered.

with a S-Box block offset, the time will increase to a range between 2000 and 2300
cycles. The observed variation in this range has a correlation with the number
of accesses to that block. Figure 7 shows the linear relationship between the
correlation of synthetic data and real attack data for one key byte after 2 million
observations. Most of the possible key candidates for a target key byte have a
matching peak and hill between the two observations. The highest correlation
points in both cases declare the correct key byte (0.038 red, 0.014 blue). The
quantitative difference is due to the expected noise in the real measurements.

Figure 8 shows the correlation of 4 different key bytes after 2 million obser-
vations with the correct key bytes having the highest correlations. Our repeated
experiments with different keys and ciphertexts show that 15 correct key bytes
have the highest correlation ranks, and there is only the key byte at index 15
that has a high rank but not necessarily the highest. Figure 9 shows the key
ranks over the number of observations. Key byte ranks take values between 1
and 256, where 1 means that the correct key byte is the most likely one. As it is
shown, after only 200,000 observations, the key space is reduced to a computa-
tionally insecure space and a key can be found with an efficient key enumeration
method [23]. After 2 million observations, all key bytes except one of them
are recovered. The non-optimized implementation of this attack processes this
amount of information in 5 min.

5.2 Attack 2: IPP Cache Protected SM4

SM4 is a block cipher4 that features an unbalanced Feistel structure and supports
128-bit blocks and keys [19]. SM4 design is known to be secure and no relevant
cryptanalytic attacks exist for the cipher. Figure 10 shows a schematic of one
round of SM4. T1–T4 are 4 × 32-bit state variables of SM4. Within each round,
the last three state variables and a 32-bit round key are mixed, and each byte
of the output will be replaced by a non-linear S-Box value. After the non-linear

4 Formerly SMS4, the standard cipher for Wireless LAN Wired Authentication and
Privacy Infrastructure (WAPI).

34 A. Moghimi et al.

Fig. 10. SM4 Feistel structure: in each round, the last three words from the state buffer
and the round key will be added. Each byte of the output will be replaced by S-Box
lookup. The function L performs a linear bit permutation.

layer, the combined 32-bit output of S-Boxes x are diffused using the linear
function L. The output of L is then mixed with the first 32-bit state variable to
generate a new random 32-bit state value. The same operation is repeated for
32 rounds, and each time a new 32-bit state is generated as the next round T4
state. The current T2, T3, T4 are treated as T1, T2, and T3 for the next round.
The final 16 bytes of the entire state after the last round produce the ciphertext.
SM4 Key schedule produces 32 × 32-bit round keys from a 128-bit key. Since
the key schedule is reversible, recovering 4 repeated round keys provides enough
entropy to reproduce the cipher key.

All the SM4 operations except the S-Box lookup are performed in 32-bit
word sizes. Hence, SM4 implementation is both simple and efficient on modern
architectures. We chose the function cpSMS4 Cipher from Intel IPP Cryptogra-
phy library. Our target is based on the straightforward cipher algorithm with
addition of S-Box cache state normalization. We recovered this implementation
through reverse engineering of Intel IPP binaries. The implementation preloads
four values from different cache lines of S-Box before the first round, and it mixes
them with some dummy variables, forcing the processor to fill the relevant cache
lines with S-Box table. This cache prefetching mechanism protects SM4 against
asynchronous cache attacks. On our experimental setup, the implementation
runs in about 700 cycles, which informs us that this implementation maintain a
high speed while secure against asynchronous attacks. Interrupted attacks that
leak intermediate states would not be as simple, since the interruption need to
happen faster than 700 cycles. We will further discuss the difficulty of correlating
any cache-granular information, even if we assume the adversary can interrupt
the encryption and perform some intermediate observations.

x32 = c1 ⊕ c2 ⊕ c3 ⊕ k32

d2 = c1, d3 = c2, d4 = c3

d1 = L(s(x
1
32), s(x

2
32), s(x

3
32), s(x

4
32)) ⊕ c4

x31 = d1 ⊕ d2 ⊕ d3 ⊕ k31

e2 = d1, e3 = d2, e4 = d3

e1 = L(s(x
1
31), s(x

2
31), s(x

3
31), s(x

4
31)) ⊕ d4r

x30 = e1 ⊕ e2 ⊕ e3 ⊕ k30

f2 = e1, f3 = e2, f4 = e3

f1 = L(s(x
1
30), s(x

2
30), s(x

3
30), s(x

4
30)) ⊕ e4

x29 = f1 ⊕ f2 ⊕ f3 ⊕ k29

g2 = f1, g3 = f2, g4 = f3

g1 = L(s(x
1
29), s(x

2
29), s(x

3
29), s(x

4
29)) ⊕ f4

x28 = g1 ⊕ g2 ⊕ g3 ⊕ k28

(1)

MemJam: A False Dependency Attack 35

0 10 20 30 40 50 60
6-Bit Round Candidates

-0.02

0

0.02

0.04

0.06

C
or

re
la

tio
n

Fig. 11. Correlations for SM4 6-bit
keys of the last 4 32-bit round key
recovered through 5 rounds of attack
using 40,000 observations.

0 50 100 150 200 250
8-Bit Round Candidates

0.05

0.1

0.15

0.2

0.25

C
or

re
la

tio
n

Fig. 12. The accumulated correlations for
SM4 8-bit keys after 5 rounds using 40,000
observations. Each correct candidate has
the highest correlation.

Single-round attack on SM4: We define c1, c2, c3, c4 as the four 32-bit words
of a ciphertext and kr as the secret round key for round r. We recursively follow
the cipher structure from the last round with our ciphertext words as inputs,
and write the last 5 rounds’ relations as Eq. 1. In each round, xi

r is the S-Box
index, and i is the byte offset of the 32-bit word xr. With a similar approach
to the attack on AES, we define matrix A for the access profile, where each
row corresponds to a known ciphertext, and each column indicates the number
of accesses when xi

r < 4. Then we define the matrix L for the observed timing
leakage and the correlation between A and L similar to the AES attack. In
contrast, S-Box indices in the AES attack are defined based on a non-linear
inverse S-Box operation of key and ciphertext, which eventually maps to all
possible key candidates. In SM4, the index xi

r is defined before any non-linear
operation. As a result, an attack capable of distinguishing accesses of 4 out of
256 S-Box entries reveals only 6 bits per key byte. In the mentioned relations,
performing the attack using this model on xi

32, recovers the 6 most significant
bits of each key byte i for the last round key (Total of 24 out of the 32 bits).

Multi-round attack on SM4: The relationship for round 31 can be used not
only to recover 6-bit key candidates of round 31, but also the remaining unknown
8 bits of entropy for round 32. This is due to the linear property of function L and
the recursive nature of newly created state variables. After the attack on round
32, similar to the round key, we only have certainty about 24 bits of the new
state variable d1, but this information will be propagated as the input to round
31. The next round of attack for key byte of round 31 needs more computation
to process an 8 bit of unknown key and 8 bit of unknown state (total of 16
bit), but this is computationally feasible, and the 8-bit key from round 32 with
highest correlation can be recovered by attacking the S-Box indices in round 31.
We recursively applied this model to each round resulting a correlation attack
with the following steps, which gives us enough entropy to recover the key:

1. x32 → 24 bits of k32.
2. x31 → 24 bits of k31 + 8 bits of k32
3. x30 → 24 bits of k30 + 8 bits of k31

4. x29 → 24 bits of k29 + 8 bits of k30
5. x28 → 24 bits of k28 + 8 bits of k29
6. Recover the key from k32, k31, k30, k29

36 A. Moghimi et al.

SM4 Key Recovery Results on Synthetic Data: Our noise-free synthetic
data shows that 3000 observations are enough to find all correct 6-bit and
8-bit round key candidates with the highest correlations. Even in an interrupted
cache attack or without cache protection, targeting this implementation using
a cache-granular information would be much harder and inefficient due to the
lack of intra cache-line resolution. If we only distinguish the 64-byte cache lines
out of a 256-byte S-Box, we only learn 4 × 2-bit (total of 8 bits) out of 32-bit
round keys, and on each round, we need to solve 8 bits + 24 bits of uncertainty.
Although solving 32-bit of uncertainty sounds possible for a noise-free data, it is
computationally much harder in a practical noisy setting. Our intra cache line
leakage can exploit SM4 efficiently in a known-ciphertext scenario, while the best
efficient cache attack on SM4 requires chosen plaintexts [45].

SM4 Key Recovery Results using MemJam: The results on SM4 show
even more effective key recovery against this implementation compared to AES.
Figure 11 shows the correlation for 6-bit round keys after 5 rounds of repeated
attack, and the correlation for 12-bit key candidates can be seen in Fig. 12. The
attack expects assurance on the correct key candidates for each round of attack
before proceeding to the next round due to the recursive structure of SM4.
In our experiment using real measurement data, we have noticed that 40,000
observations are sufficient to have assurance of correct key candidates with the
highest correlations. Our implementation of the attack can recover the correct
6-bit and 8-bit keys, and it takes about 5 min to recover the cipher key. In Fig. 12,
we plotted the accumulated per byte correlations for all 8-bit candidates within
each round of attack. During the computation of 6-bit candidates, the 8-bit
candidates relate to 4 different state bytes. This accumulation greatly increases
the result and the correct 8-bit key candidates have a very high aggregated
correlation compared to the 6-bit candidates.

6 MemJam ing SGX Enclave

Intel SGX is a trusted execution environment (TEE) extension released as part
of Skylake processor generation [32]. The main goal of SGX is to protect runtime
data and computation from system and physical adversaries. Having said that,
SGX must remain secure in the presence of malicious OS, thus modification of
OS resources for facilitation of side-channel attacks is relevant and within the
considered threat model. Previous works demonstrate high resolution attacks
with 4 kB page [51,56] and 64 B cache line granularity [11,44]. Intel declared
microarchitectural leakages out of scope for SGX, thus pushing the burden of
writing leakage free constant-time code onto enclave developers. Indeed, Intel
follows this design paradigm and ensures constant cache-line accesses for its AES
implementation, making it resistant to all previously known microarchitectural
attacks in SGX.

In this section, we verify that MemJam is also applicable to SGX enclaves,
as there is no fundamental microarchitectural changes to resist against memory

MemJam: A False Dependency Attack 37

false dependencies. We repeat the key recovery results against Intel’s constant-
time AES implementation after moving it into an SGX enclave. The results verify
the exploitability of intra cache level channel against SGX secure enclaves. In
fact, the attack can be reproduced in a straightforward manner. The only differ-
ence is a slower key recovery due to the increased measurement noise resulting
from the enclave context switch.

6.1 SGX Enclave Experimental Setup and Assumptions

Following the threat model of CacheZoom [41,44], we assume that the system
adversary has control over various OS resources. Please note that SGX was
exactly designed to thwart the threat of such adversaries. The adversary uses
its OS-level privileges to decrease the setup noise: We isolate one of the physical
cores from the rest of the running tasks, and dedicate its logical processors
to MemJam write conflict thread and the victim enclave. We further disable
all the non-maskable interrupts on the target physical core and configure the
CPU power and frequency scaling to maintain a constant frequency. We assume
that the adversary can measure the execution time of an enclave interface that
performs encryption, and the enclave interface only returns the ciphertext to
the insecure environment. Both plaintexts and the secret encryption key are
generated at runtime using RDRAND instruction, and they never leave the
secure runtime environment of SGX enclave. The RDTSC instruction cannot be
used inside an enclave. The attacker uses it right before the call to the enclave
interface and again right after the enclave exit. As a result, the entire execution
of the enclave interface, including the AES encryption, is measured. As before,
an active thread causing read-after-write conflicts to the first 4-byte of AES
S-Box is executed on the neighboring virtual processor of the SGX thread.

6.2 AES Key Recovery Results on SGX

Execution of the same AES encryption function as Sect. 5.1 inside an SGX
enclave interface takes an average of 14,600 cycles with an active thread causing
read-after-write conflicts to the first 4-byte of AES S-Box. The additional over-
head is caused by the enclave context switch, which significantly increases the
noise of the timing channel due to the variable timing behavior. Having that,
this experiment shows a more practical timing behavior where adversaries can-
not time the exact encryption operation, and they have to measure the time
for a batch of operations. This not only shows that SGX is vulnerable to Mem-
Jam attack, but it also demonstrates that MemJam is applicable in a realis-
tic scenario. Figure 13 shows the key correlation results using 50 million timed
encryptions in SGX, collected in 10 different time frames. We filtered outliers, i.e.
measurements with high noise by only considering samples that are in the range
of 2000 cycles of the mean. Among the 50 million samples, 93% pass the filter-
ing, and we only calculated the correlations for the remaining traces. Figure 14
shows that we can successfully recover 14 out of 16 key bytes, revealing sufficient
information for key recovery after 20 million observations.

38 A. Moghimi et al.

0 50 100 150 200 250
Key Candidates

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

C
or

re
la

tio
ns

10 -3

Key Byte 1
Key Byte 2
Key Byte 3
Key Byte 4
Key Byte 5
Key Byte 6

Fig. 13. Correlations for 6 key bytes
using 5 million observations. All of the
correct candidates have the highest cor-
relations.

5 M 10 M 15 M 20 M 25 M 30 M 35 M 40 M 45 M
46.8 M

Observations

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Ke
y

By
te

s
(R

an
ks

)

3

1
1
3

4
5

17
30

1

16
1
1
3

59
5
4

71
3
9

39

1
25
2
1
1
1

11
1

11
37
35
3
9

51
1

1
5
1
1
1
1
3
2
4

13
29
4
1

66
1

1
1
1
1
1
1
2
1
1
2

40
1
1

47
1

1
1
1
1
1
1
1
1
1
1

42
4
1

43
2

1
1
1
1
1
1
1
1
1
3

42
5
1

46
40
1

1
1
1
1
1
1
1
1
1
2

25
3
1

45
50
1

1
1
1
1
1
1
1
1
1
3
2
2
1

43

1

1
1
1
1
1
1
1
1
1
3
1
2
1

54

1

83
85

99

92
99

81
99
99

79

98

99
85

99 95 84 76
81 83

20

40

60

80

Fig. 14. The rank for correct key bytes
with respect to the number of observa-
tions. Using the entire data set, after fil-
tering the outliers, we can recover 14 out
of 16 key bytes.

These results show that even cryptographic libraries designed by experts that
are fully aware of current attacks and of the leakage behavior of the target device
may fail at writing unexploitable code. Modern microarchitectures are so com-
plex that assumptions such as constant cache line profiles result in unexploitable
constant-time implementations are seemingly impossible to fulfill.

7 Discussion

The Safe2Encrypt RIJ128 AES implementation has been designed to achieve a
constant cache access profile by ensuring that the same cache lines are accessed
every time regardless of the processed data. The 4-byte spatial resolution of
MemJam, however, thwarts this countermeasure by providing intra cache-line
resolution. One approach to restore security and protect against MemJamis to
apply constant memory accesses with a 4-byte granularity. That would require
accessing every fourth byte of the table for each memory lookup for the purpose
of maintaining a uniform memory footprint. At that point, it might be easier to
just do a true constant time implementation and access all entries each time,
resting assured that there is no other effect somewhere hidden in the microarchi-
tecture resulting in a leak with byte granularity. As we discussed in the related
work, system-wide defense proposals that apply to cache attacks are not relevant
and cannot detect or prevent MemJam. Also, an adversary performing the Mem-
Jam attack does not need to know about the offset of S-Box in the binary, since
she can simply scan the 10-bits address entropy through introducing conflicts to
different offsets and measuring the timing of victim. This is important when it
comes to obfuscated binaries or scenarios, where the offset of S-Box is unknown.

Hardware based, e.g., AES-NI or hardware assisted, e.g., SIMD-based bit-
sliced implementations of AES or SM4 should exclusively be used to protect the
targeted implementation in an efficient manner. Intel IPP has different variants
optimized for various generations of Intel instruction sets [35]. Intel IPP features

MemJam: A False Dependency Attack 39

Table 1. SM4 and AES implementations in all variants of Intel IPP library version
2017 update 3 [35]. The variants will be merged at linker and each variant is optimized
for a different generation of the Intel instruction set [31]. Developers can statically link
specific variants with single processor static linking mode [35].

Implementation Function name l9 n0 y8 k0 e9 m7 mx n8 Linux SGX SDK

AES-NI Encrypt RIJ128 AES NI � × × � (prebuilt)

AES bitsliced SafeEncrypt RIJ128 � × � � (prebuilt)

AES constant-time Safe2Encrypt RIJ128 × � × � (source)

SM4 bitsliced using AES-NI cpSMS4 ECB aesni � × × N/A

SM4 cache normalization cpSMS4 Cipher � � � N/A

different implementations of AES as well as SM4 in these variants. A list of these
variants and implementations are given in Table 1. All of them have at least one
vulnerable implementation. In cases where there is an implementation based on
the AES-NI instruction set (or SSSE3 respectively), the library falls back to the
basic version at runtime if the instruction set extensions are not available. The
usability of this depends on the compilation and runtime configuration. Devel-
opers are allowed to statically link to a more risky variants [31], and they need
to assure not to use the vulnerable versions during linking. These ciphers should
be avoided in cases where the hardware does not provide support, e.g., Core
and Nehalem does not support AES-NI, e.g., AES-NI can be disabled in some
BIOS. After all, the current hardware support for cryptographic primitives are
restricted and if any other cipher is demanded, this limitation and vulnerability
endangers the security of cryptographic systems. A temporary workaround to
defend against this attack is to disable hyper-threading.

Prior to MemJam it might have seemed reasonable to design SGX enclaves
under the paradigm that constant cache line accesses result in leakage-free code.
However, the increased 4-byte intra cache-line granularity of MemJam shows
that only code with true constant-time properties, i.e. constant execution flow
and constant memory accesses can be expected to have no remaining leakage on
modern microarchitectures.

8 Conclusion

This work proposes MemJam, a new side-channel attack based on false depen-
dencies. For the first time, we discovered new aspects of this side channel and
its capabilities, and show how to extract secrets from modern cryptographic
implementations. MemJam uses false read-after-write dependencies to slow down
accesses of the victim to a particular 4-byte memory blocks within a cache line.
The resulting latency of otherwise constant-time implementations was exploited
with state-of-the art timing side-channel analysis techniques. We showed how to
apply the attack to two recent implementations of AES and SM4. According to
the available resources, the source of leakage forMemJam attack is present in
all Intel CPU families released in the last 10 years [5,29]. Table 2 highlights the
availability of the cache bank conflicts and 4k aliasing leakage source. MemJam is

40 A. Moghimi et al.

Table 2. Intel processor families and availability of the leakage channels. Major Intel
processors suffer from 4k aliasing, and are vulnerable to MemJam [5].

Release Family Cache bank conflicts 4K aliasing

2006 Core � �
2008 Nehalem × �
2011 Sandy bridge � �
2013 Silvermont, Haswell, Broadwell × �
2015 Skylake × �
2016 KabyLake × �

another piece of evidence that modern microarchitectures are too complex and
constant-time implementations cannot simply be trusted with wrong assump-
tions about the underlying system. The remaining data-dependent addressing
within a cache line is exploitable.

Acknowledgements. This work is supported by the National Science Foundation,
under grant CNS-1618837.

Responsible Disclosure. We have informed the Intel Product Security Incident
Response Team of our findings on August 2nd, 2017. They have acknowledged the
receipt on August 4th, 2017 and confirmed a work-in-progress patch for IPP library on
September 17th, 2017 (CVE-2017-5737).

References

1. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache attacks.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 110–124.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 8

2. Acıiçmez, O., Gueron, S., Seifert, J.-P.: New branch prediction vulnerabilities in
openSSL and necessary software countermeasures. In: Galbraith, S.D. (ed.) Cryp-
tography and Coding 2007. LNCS, vol. 4887, pp. 185–203. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77272-9 12

3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 15

4. Aciicmez, O., Seifert, J.-P.: Cheap hardware parallelism implies cheap security. In:
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2007. IEEE
(2007)

5. Agner: The microarchitecture of Intel, AMD and VIA CPUs: an optimization guide
for assembly programmers and compiler makers. http://www.agner.org/optimize/
microarchitecture.pdf

6. Allan, T., Brumley, B.B., Falkner, K., van de Pol, J., Yarom, Y.: Amplifying side
channels through performance degradation. In: Annual Computer Security Appli-
cations Conference (ACSAC) (2016)

https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/11967668_15
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

MemJam: A False Dependency Attack 41

7. Andrysco, M., Kohlbrenner, D., Mowery, K., Jhala, R., Lerner, S., Shacham, H.:
On subnormal floating point and abnormal timing. In: 2015 IEEE Symposium on
Security and Privacy (SP). IEEE (2015)

8. Aweke, Z.B., Austin, T.: Ozone: Efficient Execution with Zero Timing Leakage for
Modern Microarchitectures. arXiv preprint arXiv:1703.07706 (2017)

9. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah... Just a Little
Bit”: a small amount of side channel can go a long way. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 5

10. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11894063 16

11. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: 11th USENIX Work-
shop on Offensive Technologies (WOOT 2017). USENIX Association, Vancou-
ver, BC (2017). https://www.usenix.org/conference/woot17/workshop-program/
presentation/brasser

12. Brickell, E., Graunke, G., Neve, M., Seifert, J.-P.: Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. IACR Cryptology
ePrint Archive (2006)

13. Brickell, E., Graunke, G., Seifert, J.-P.: Mitigating cache/timing based side-
channels in AES and RSA software implementations. In: RSA Conference 2006
session DEV-203 (2006)

14. Briongos, S., Irazoqui, G., Malagón, P., Eisenbarth, T.: CacheShield: Protecting
Legacy Processes Against Cache Attacks. arXiv preprint arXiv:1709.01795 (2017)

15. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw. 48,
701–716 (2005)

16. Carluccio, D.: Electromagnetic side channel analysis for embedded crypto devices.
Master’s thesis, Ruhr Universität Bochum (2005)

17. Costan, V., Lebedev, I.A., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: USENIX Security Symposium (2016)

18. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer Science & Business Media, Berlin (2013). https://doi.org/10.
1007/978-3-662-04722-4

19. Diffie, W., Ledin, G.: SMS4 Encryption Algorithm for Wireless Networks. IACR
Cryptology ePrint Archive (2008)

20. Doychev, G., Köpf, B.: Rigorous analysis of software countermeasures against cache
attacks. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2017)

21. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A Survey of Microarchitectural Tim-
ing Attacks and Countermeasures on Contemporary Hardware. IACR Cryptology
ePrint Archive 2016/613 (2016)

22. Ge, Q., Yarom, Y., Li, F., Heiser, G.: Contemporary Processors Are Leaky–And
Theres Nothing You Can Do About It. The Computing Research Repository. arXiv
(2016)

23. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48116-5 6

http://arxiv.org/abs/1703.07706
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/11894063_16
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
http://arxiv.org/abs/1709.01795
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-48116-5_6

42 A. Moghimi et al.

24. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

25. Gueron, S., Krasnov, V.: SM4 acceleration processors, methods, systems, and
instructions. US Patent 9,513,913, 6 December 2016. https://www.google.com/
patents/US9513913

26. Gullasch, D., Bangerter, E., Krenn, S.: Cache games-bringing access-based cache
attacks on AES to practice. In: 2011 IEEE Symposium on Security and Privacy
(SP). IEEE (2011)

27. Inci, M.S., Gülmezoglu, B., Apecechea, G.I., Eisenbarth, T., Sunar, B.: Seriously,
get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. IACR Cryptol-
ogy ePrint Archive (2015)

28. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 368–388. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 18

29. Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual. https://
www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-archite
ctures-optimization-manual.html

30. Intel: Intel 64 and IA-32 Architectures Software Developer Manuals. https://
software.intel.com/en-us/articles/intel-sdm

31. Intel IPP linkage models - quick reference guide. https://software.intel.com/en-
us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-linkage-mo
dels-quick-reference-guide

32. Intel: Intel(R) Software Guard Extensions for Linux* OS. https://github.com/
01org/linux-sgx

33. Intel: Pin, Dynamic Binary Instrumentation Tool. https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool

34. Symmetric Cryptography Primitive Functions. https://software.intel.com/en-us/
ipp-crypto-reference-symmetric-cryptography-primitive-functions

35. Understanding CPU Dispatching in the Intel IPP Libraries. https://software.
intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-underst
anding-cpu-optimized-code-used-in-intel-ipp

36. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing-and its application to AES. In: 2015 IEEE
Symposium on Security and Privacy (SP) (2015)

37. Irazoqui, G., Eisenbarth, T., Sunar, B.: MASCAT: Stopping Microarchitectural
Attacks Before Execution. IACR Cryptology ePrint Archive (2016)

38. Kayaalp, M., Khasawneh, K.N., Esfeden, H.A., Elwell, J., Abu-Ghazaleh, N., Pono-
marev, D., Jaleel, A.: RIC: relaxed inclusion caches for mitigating LLC side-channel
attacks. In: Proceedings of the 54th Annual Design Automation Conference 2017.
ACM (2017)

39. Koç, C.K.: Analysis of sliding window techniques for exponentiation. Comput.
Math. Appl. 30, 17–24 (1995)

40. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power anal-
ysis. J. Cryptogr. Eng. 1, 5–27 (2011)

41. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. arXiv preprint
arXiv:1611.06952 (2016)

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.google.com/patents/US9513913
https://www.google.com/patents/US9513913
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-linkage-models-quick-reference-guide
https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-linkage-models-quick-reference-guide
https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-linkage-models-quick-reference-guide
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/ipp-crypto-reference-symmetric-cryptography-primitive-functions
https://software.intel.com/en-us/ipp-crypto-reference-symmetric-cryptography-primitive-functions
https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-understanding-cpu-optimized-code-used-in-intel-ipp
https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-understanding-cpu-optimized-code-used-in-intel-ipp
https://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-understanding-cpu-optimized-code-used-in-intel-ipp
http://arxiv.org/abs/1611.06952

MemJam: A False Dependency Attack 43

42. Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Catalyst:
defeating last-level cache side channel attacks in cloud computing. In: 2016 IEEE
Symposium on High Performance Computer Architecture (HPCA) (2016)

43. Marr, D., Binns, F., Hill, D., Hinton, G., Koufaty, D., et al.: Hyper-threading
technology in the netburst R© microarchitecture. In: 14th Hot Chips (2002)

44. Moghimi, A., Irazoqui, G., Eisenbarth, T.: Cachezoom: how SGX amplifies the
power of cache attacks. arXiv preprint arXiv:1703.06986 (2017)

45. Nguyen, P.H., Rebeiro, C., Mukhopadhyay, D., Wang, H.: Improved differential
cache attacks on SMS4. In: Kuty�lowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS,
vol. 7763, pp. 29–45. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38519-3 3

46. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

47. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security. ACM (2009)

48. Schimmel, C.: UNIX Systems for Modern Architectures: Symmetric Multiprocess-
ing and Caching for Kernel Programmers. Addison-Wesley Publishing Co., Boston
(1994)

49. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23, 37–71 (2010)

50. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45238-6 6

51. Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling your
secrets without page faults: stealthy page table-based attacks on enclaved execu-
tion. In: Proceedings of the 26th USENIX Security Symposium. USENIX Associ-
ation (2017)

52. Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: CacheD: identifying cache-
based timing channels in production software. In: 26th USENIX Security Sym-
posium (USENIX Security 2017), pp. 235–252. USENIX Association, Vancouver
(2017). https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/wang-shuai

53. Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 41

54. Wolrich, G., Gopal, V., Yap, K., Feghali, W.: SMS4 acceleration processors, meth-
ods, systems, and instructions. US Patent 9,361,106, 7 June 2016. https://www.
google.com/patents/US9361106

55. Xu, M., Thi, L., Phan, X., Choi, H.Y., Lee, I.: vCAT: dynamic cache management
using CAT virtualization. In: 2017 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE (2017)

56. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy (SP), pp. 640–656. IEEE (2015)

57. Yap, K., Wolrich, G., Satpathy, S., Gulley, S., Gopal, V., Mathew, S., Feghali, W.:
SMS4 acceleration hardware. US Patent 9,503,256, 22 November 2016. https://
www.google.com/patents/US9503256

http://arxiv.org/abs/1703.06986
https://doi.org/10.1007/978-3-642-38519-3_3
https://doi.org/10.1007/978-3-642-38519-3_3
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-39799-X_41
https://www.google.com/patents/US9361106
https://www.google.com/patents/US9361106
https://www.google.com/patents/US9503256
https://www.google.com/patents/US9503256

44 A. Moghimi et al.

58. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security (2014)

59. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL
constant-time RSA. J. Cryptogr. Eng. 7, 99–112 (2017)

60. Zhang, T., Zhang, Y., Lee, R.B.: CloudRadar: a real-time side-channel attack detec-
tion system in clouds. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J.
(eds.) RAID 2016. LNCS, vol. 9854, pp. 118–140. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45719-2 6

61. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security. ACM (2012)

62. Zhou, Z., Reiter, M.K., Zhang, Y.: A software approach to defeating side channels
in last-level caches. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM (2016)

https://doi.org/10.1007/978-3-319-45719-2_6
https://doi.org/10.1007/978-3-319-45719-2_6

	MemJam: A False Dependency Attack Against Constant-Time Crypto Implementations in SGX
	1 Introduction
	1.1 Our Contribution
	1.2 Experimental Setup and Generic Assumptions

	2 Related Work
	3 Background
	4 MemJam: Read-After-Write Attack
	4.1 Memory Dependency Fuzz Testing

	5 MemJam Correlation Attack
	5.1 Attack 1: IPP Constant-Time AES
	5.2 Attack 2: IPP Cache Protected SM4

	6 MemJaming SGX Enclave
	6.1 SGX Enclave Experimental Setup and Assumptions
	6.2 AES Key Recovery Results on SGX

	7 Discussion
	8 Conclusion
	References

